Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T23:19:24.381Z Has data issue: false hasContentIssue false

Engineering the rabbit digestive ecosystem to improve digestive health and efficacy

Published online by Cambridge University Press:  17 June 2013

S. Combes*
Affiliation:
INRA, UMR1289 Tissus Animaux Nutrition Digestion Ecosystème et Métabolisme, F-31326 Castanet-Tolosan, France Université de Toulouse INPT ENSAT, UMR1289 Tissus Animaux Nutrition Digestion Ecosystème et Métabolisme, F-31326 Castanet-Tolosan, France Université de Toulouse INPT ENVT, UMR1289 Tissus Animaux Nutrition Digestion Ecosystème et Métabolisme, F-31076 Toulouse, France
L. Fortun-Lamothe
Affiliation:
INRA, UMR1289 Tissus Animaux Nutrition Digestion Ecosystème et Métabolisme, F-31326 Castanet-Tolosan, France Université de Toulouse INPT ENSAT, UMR1289 Tissus Animaux Nutrition Digestion Ecosystème et Métabolisme, F-31326 Castanet-Tolosan, France Université de Toulouse INPT ENVT, UMR1289 Tissus Animaux Nutrition Digestion Ecosystème et Métabolisme, F-31076 Toulouse, France
L. Cauquil
Affiliation:
INRA, UMR1289 Tissus Animaux Nutrition Digestion Ecosystème et Métabolisme, F-31326 Castanet-Tolosan, France Université de Toulouse INPT ENSAT, UMR1289 Tissus Animaux Nutrition Digestion Ecosystème et Métabolisme, F-31326 Castanet-Tolosan, France Université de Toulouse INPT ENVT, UMR1289 Tissus Animaux Nutrition Digestion Ecosystème et Métabolisme, F-31076 Toulouse, France
T. Gidenne
Affiliation:
INRA, UMR1289 Tissus Animaux Nutrition Digestion Ecosystème et Métabolisme, F-31326 Castanet-Tolosan, France Université de Toulouse INPT ENSAT, UMR1289 Tissus Animaux Nutrition Digestion Ecosystème et Métabolisme, F-31326 Castanet-Tolosan, France Université de Toulouse INPT ENVT, UMR1289 Tissus Animaux Nutrition Digestion Ecosystème et Métabolisme, F-31076 Toulouse, France
*
Get access

Abstract

In rabbits, the bacterial and archaeal community of caecal ecosystem is composed mostly of species not yet described and very specific to that species. In mammals, the digestive ecosystem plays important physiological roles: hydrolysis and fermentation of nutrients, immune system regulation, angiogenesis, gut development and acting as a barrier against pathogens. Understanding the functioning of the digestive ecosystem and how to control its functional and specific diversity is a priority, as this could provide new strategies to improve the resistance of the young rabbit to digestive disorders and improve feed efficiency. This review first recalls some facts about the specificity of rabbit digestive microbiota composition in the main fermentation compartment, and its variability with some new insights based on recent molecular approaches. The main functions of the digestive microbiota will then be explained. Finally, some possible ways to control rabbit caecal microbiota will be proposed and a suitable timing for action will be defined.

Type
Nutrition
Copyright
Copyright © The Animal Consortium 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abecia, L, Fondevila, M, Balcells, J, McEwan, NR 2007a. The effect of lactating rabbit does on the development of the caecal microbial community in the pups they nurture. Journal of Applied Microbiology 103, 557564.Google Scholar
Abecia, L, Fondevila, M, Balcells, J, Lobley, GE, McEwan, NR 2007b. The effect of medicated diets and level of feeding on caecal microbiota of lactating rabbit does. Journal of Applied Microbiology 103, 787793.CrossRefGoogle ScholarPubMed
Abecia, L, Fondevila, M, Balcells, J, Edwards, JE, Newbold, CJ, McEwan, NR 2005. Molecular profiling of bacterial species in the rabbit caecum. FEMS Microbiology Letters 244, 111115.Google Scholar
Abecia, L, Fondevila, M, Balcells, J, Edwards, JE, Newbold, CJ, McEwan, NR 2007c. Effect of antibiotics on the bacterial population of the rabbit caecum. FEMS Microbiology Letters 272, 144153.Google Scholar
Amber, KH 2004. Effect of feeding diets containing yucca extract or probiotic on growth, digestibility, nitrogen balance and caecal microbial activity of growing New Zealand white rabbits, 8th World Rabbit Congress, Puebla, Mexico.Google Scholar
Backhed, F, Ding, H, Wang, T, Hooper, LV, Koh, GY, Nagy, A, Semenkovich, CF, Gordon, JI 2004. The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences, USA 101, pp. 1571815723.CrossRefGoogle ScholarPubMed
Badiola, I, Perez de Rozas, AM, Roca, M, Carabaño, R, Gomez, M, Garcia, J, Blas, Cd 2004. Characterization of the microbial diversity of rabbit intestinal tract by restriction fragment length polymorphism. Pueblo, Mexico.Google Scholar
Barton, MD 2000. Antibiotic use in animal feed and its impact on human health. Nutrition Research Reviews 13, 279299.Google Scholar
Belenguer, A, Fondevila, M, Balcells, J, Abecia, L, Lachica, M, Carro, MD 2011. Methanogenesis in rabbit caecum as affected by the fermentation pattern: in vitro and in vivo measurements. World Rabbit Science 19, 7583.Google Scholar
Bellier, R, Gidenne, T, Vernay, M, Colin, M 1995. In-vivo study of circadian variations of the cecal fermentation pattern in postweaned and adult-rabbits. Journal of Animal Science 73, 128135.Google Scholar
Bennegadi, N, Fonty, G, Millet, L, Gidenne, T, Licois, D 2003. Effects of age and dietary fibre level on caecal microbial communities of conventional and specific pathogen-free rabbits. Microbial Ecology in Health and Disease 5, 2332.Google Scholar
Berg, D 1996. The indigenous gastrointestinal microflora. Trends in Microbiology 4, 430435.CrossRefGoogle ScholarPubMed
Boadi, D, Benchaar, C, Chiquette, J, Masse, D 2004. Mitigation strategies to reduce enteric methane emissions from dairy cows. Canadian Journal of Animal Science 84, 319335.CrossRefGoogle Scholar
Bonai, A, Szendro, Z, Matics, Z, Febel, H, Posa, R, Tornyos, G, Horn, P, Kovacs, F, Kovacs, M 2008. Effect of Bacillus cereus var. toyoi on caecal microflora and fermentation in rabbits, 9th World Rabbit Congress, Verona, Italy, pp. 561–566.Google Scholar
Bónai, A, Szendrõ, Z, Matics, Z, Febel, H, Kametler, L, Tornyos, G, Horn, P, Kovács, F, Kovács, M 2010. Effect of inulin supplementation and age on growth performance and digestive physiological parameters in weaned rabbits. World Rabbit Science 18, 121129.Google Scholar
Bónai, A, Dalle Zotte, A, Kametler, L, Vántus, V, Morsy, WA, Matics, Z, Dal Bosco, A, Szendrö, Z, Kovács, M 2012. Dietary supplementation of Spirulina (Arthrospira platensis) and Thyme (Thymus vulgaris). Part 2 – effect on gastrointestinal growth, caecal microbiota and fermentation in rabbits, 10th World Rabbit Congress, Sharm El-Sheikh, Egypt, pp. 707–711.Google Scholar
Boulahrouf, A, Fonty, G, Gouet, P 1991. Establishment, counts and identification of the fibrolytic bacteria in the digestive tract of rabbit. Influence of feed cellulose content. Current Microbiology 22, 125.CrossRefGoogle Scholar
Carabaño, R, Piquer, J, Menoyo, D, Badiola, I 2010. The digestive system of the rabbit. In Nutrition of the rabbit (ed. C De Blas and J Wiseman), pp. 118. CABI, Wallingford, UK.Google Scholar
Carabaño, R, Villamide, MJ, Garcia, J, Nicodemus, N, Llorente, A, Chamorro, S, Menoyo, D, Garcia-Rebollar, P, Garcia-Ruiz, AI, De Blas, JC 2009. New concepts and objectives for protein-amino acid nutrition in rabbits: a review. World Rabbit Science 17, 114.Google Scholar
Chamorro, S, Gomez-Conde, MS, Perez de Rozas, AM, Carabaño, R, De Blas, JC 2007. Effect on digestion and performance of dietary protein content and of increased substitution of lucerne hay with soya-bean protein concentrate in starter diets for young rabbits. Animal 1, 651659.Google Scholar
Chamorro, S, de Blas, C, Grant, G, Badiola, I, Menoyo, D, Carabaño, R 2010. Effect of dietary supplementation with glutamine and a combination of glutamine-arginine on intestinal health in twenty-five-day-old weaned rabbits. Journal of Animal Science 88, 170180.CrossRefGoogle Scholar
Chevance, A, Moulin, G 2012. Suivi des ventes de médicaments vétérinaires contenant des antibiotiques en France en 2011. Ministère de l'Agriculture de l'Alimentation de la Pêche et des Affaires Rurales, p. 38. Anses – ANMV, Maisons-Alfort, France. http://www.anses.fr/Documents/ANMV-Ra-Antibiotiques2011.pdfGoogle Scholar
Combes, S, Cauquil, L, Gidenne, T 2008. Impact of an exclusive milk vs milk and dry feed intake till weaning on intake, growth, and on the caecal biociversity and fibrolytic activity of the young rabbit,9th World Rabbit Congress, Verona, Italy, pp. 607–611.Google Scholar
Combes, S, Michelland, RJ, Monteils, V, Cauquil, L, Soulie, V, Tran, NU, Gidenne, T, Fortun-Lamothe, L 2011. Postnatal development of the rabbit caecal microbiota composition and activity. FEMS Microbiology Ecology 77, 680689.Google Scholar
Corrigan, A, Horgan, K, Clipson, N, Murphy, RA 2011. Effect of dietary supplementation with a Saccharomyces cerevisiae mannan oligosaccharide on the bacterial community structure of broiler cecal contents. Applied and Environmental Microbiology 77, 66536662.Google Scholar
Corthier, G 2011. Bonnes bactéries et bonne santé. Quae, Versailles, France.Google Scholar
Coudert, P, Licois, D, Besnard, J 1988. Establishment of a specified pathogen free breeding colony (SPF) without hysterectomy and hand-rearing procedures, Proceedings of the 4th Congress of WRSA, Budapest, pp. 137–148.Google Scholar
Curtis, TP, Sloan, WT 2004. Prokaryotic diversity and its limits: microbial community structure in nature and implications for microbial ecology. Current Opinion in Microbiology 7, 221226.Google Scholar
Ducluzeau, R 1969. Influence de l'espèce zoologique sur la microflore du tractus digestif. Revue d'Immunologie 33, 345384.Google Scholar
Emaldi, O, Crociani, F, Matteuzzi, D, Proto, V 1978. A note on the total viable counts and selective enumeration of anaerobic bacteria in the caecal contents, soft and hard faeces of rabbit. Journal of Applied Bacteriology 46, 169172.Google Scholar
Falcao-e-Cunha, L, Castro-Solla, L, Maertens, L, Marounek, M, Pinheiro, V, Freire, J, Mourao, JL 2007. Alternatives to antibiotic growth promoters in rabbit feeding: a review. World Rabbit Science 15, 127140.Google Scholar
Fonty, G, Gouet, P 1989. Fibre-degradating microorganisms in the monogastric digestive tract. Animal Feed Science and Technology 23, 91107.Google Scholar
Fonty, G, Chaucheyras-Durand, F 2007. Les écosystèmes digestifs. Lavoisier (Tec & Doc), Paris, France.Google Scholar
Fonty, G, Gouet, P, Riou, Y 1979. Effect of milk composition on the gastrointestinal microflora of the rabbit. Annales de Biologie Animale Biochimie Biophysique 19, 567571.Google Scholar
Forsythe, SJ, Parker, DS 1985. Nitrogen metabolism by the microbial flora of the rabbit. Journal of Applied Bacteriology 58, 363369.Google Scholar
Fortun-Lamothe, L, Gidenne, T 2000. The effects of size of suckled litter on intake behaviour, performance and health status of young and reproducing rabbits. Annales de Zootechnie 49, 517529.CrossRefGoogle Scholar
Fortun-Lamothe, L, Boullier, S 2007. A review on the interactions between gut microflora and digestive mucosal immunity. Possible ways to improve the health of rabbits. Livestock Science 107, 118.Google Scholar
Franz, R, Soliva, CR, Kreuzer, M, Hummel, J, Clauss, M 2011. Methane output of rabbits (Oryctolagus cuniculus) and guinea pigs (Cavia porcellus) fed a hay-only diet: implications for the scaling of methane production with body mass in non-ruminant mammalian herbivores. Comparative Biochemistry and Physiology, Part A: Molecular & Integrative Physiology 158, 177181.Google Scholar
Gallois, M, Gidenne, T, Fortun-Lamothe, L, Le Huerou-Luron, I, Lallès, JP 2005. An early stimulation of solid feed intake slightly influences the morphological gut maturation in the rabbit. Reproduction Nutrition Development 45, 109122.Google Scholar
Garcia, AI, de Blas, JC, Carabano, R 2004. Effect of type of diet (casein-based or protein-free) and caecotrophy on ileal endogenous nitrogen and amino acid flow in rabbits. Animal Science 79, 231240.Google Scholar
García, J, Gidenne, T, Falcao-e-Cunhac, L, Blas, Cd 2002. Identification of the main factors that influence caecal fermentation traits in growing rabbits. Animal Research 51, 165173.Google Scholar
Gibson, G, Roberfroid, M 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. The Journal of Nutrition 125, 14011412.Google Scholar
Gidenne, T 1992. Effect of fibre level, particle size and adaptation period on digestibility and rate of passage as measured at the ileum and in the faeces in the adult rabbit. British Journal of Nutrition 67, 133146.Google Scholar
Gidenne, T 1994. Estimation of volatile fatty acids and of their energetic supply in the rabbit caecum: effect of the dietary fibre level, VIème Journées de la Recherche Cunicole, Paris, pp. 293–299.Google Scholar
Gidenne, T 2003. Fibres in rabbit feeding for digestive troubles prevention: respective role of low-digested and digestible fibre. Livestock Production Science 81, 105117.CrossRefGoogle Scholar
Gidenne, T, Lebas, F 2006. Feeding behaviour in rabbits. In Feeding in domestic vertebrates. From structure to behaviour (ed. V Bels), pp. 179209. CABI Publishing, Wallingford, UK.Google Scholar
Gidenne, T, Feugier, A 2009. Feed restriction strategy in the growing rabbit. 1. Impact on digestion, rate of passage and microbial activity. Animal 3, 501508.Google Scholar
Gidenne, T, Pinheiro, V, Falcao E Cunha, L 2000. A comprehensive approach of the rabbit digestion: consequences of a reduction in dietary fibre supply. Livestock Production Science 64, 225237.Google Scholar
Gidenne, T, Lebas, F, Fortun-Lamothe, L 2010a. Feeding behaviour of rabbits. In Nutrition of the rabbit (ed. C De Blas and J Wiseman), pp. 233252. CABI, Wallingford, UK.Google Scholar
Gidenne, T, Combes, S, Fortun-Lamothe, L 2012. Feed intake limitation strategies for the growing rabbit: effect on feeding behaviour, welfare, performance, digestive physiology and health: a review. Animal 6, 14071419.Google Scholar
Gidenne, T, Jehl, N, Lapanouse, A, Segura, M 2004a. Inter-relationship of microbial activity, digestion and gut health in the rabbit: effect of substituting fibre by starch in diets having a high proportion of rapidly fermentable polysaccharides. British Journal of Nutrition 92, 95104.CrossRefGoogle ScholarPubMed
Gidenne, T, Carabano, R, Garcia, J, Blas, CD 2010b. Fiber digestion. In Nutrition of the rabbit (ed. C De Blas and J Wiseman), pp. 179199. CABI, Wallingford, UK.Google Scholar
Gidenne, T, Garcia, J, Lebas, F, Licois, D 2010c. Nutrition and feeding strategy: interactions with pathology. In Nutrition of the rabbit (ed. C De Blas and J Wiseman), pp. 179199. CABI, Wallingford, UK.Google Scholar
Gidenne, T, Bennegadi-Laurent, N, Bayourthe, C, Monteils, V, Fonty, G 2006. Post-weaning maturation of rabbit caecal microbial communities: impact of live yeast intake, Vth Joint RRI-INRA Conference Gut Microbiology, Aberdeen, Scotland.Google Scholar
Gidenne, T, Combes, S, Licois, D, Carabaño, R, Badiola, I, Garcia, J 2008. Ecosystème caecal et nutrition du lapin: interactions avec la santé digestive. INRA Productions Animales 21, 239250.Google Scholar
Gidenne, T, Mirabito, L, Jehl, N, Perez, JM, Arveux, P, Bourdillon, A, Briens, C, Duperray, J, Corrent, E 2004b. Impact of replacing starch by digestible fibre, at two levels of lignocellulose, on digestion, growth and digestive health of the rabbit. Animal Science 78, 389398.Google Scholar
Gómez-Conde, MS, de Rozas, AP, Badiola, I, Pérez-Alba, L, de Blas, C, Carabaño, R, García, J 2009. Effect of neutral detergent soluble fibre on digestion, intestinal microbiota and performance in twenty five day old weaned rabbits. Livestock Science 125, 192198.Google Scholar
Gómez-Conde, MS, Garcia, J, Chamorro, S, Eiras, P, Rebollar, PG, Perez de Rozas, A, Badiola, I, de Blas, C, Carabaño, R 2007. Neutral detergent-soluble fiber improves gut barrier function in twenty-five-day-old weaned rabbits. Journal of Animal Science 85, 33133321.Google Scholar
Gouet, P, Fonty, G 1973. Evolution de la microflore digestive du lapin holoxénique de la naissance au sevrage. Annales de Biologie Animale, Biochimie, Biophysique 13, 733735.Google Scholar
Gouet, P, Fonty, G 1979. Changes in the digestive microflora of holoxenic rabbits from birth until adullthood. Annales de Biologie Animale, Biochimie, Biophysique 19, 553566.Google Scholar
Guarner, F, Malagelada, J-R 2003. Gut flora in health and disease. The Lancet 361, 512519.Google Scholar
Hanson, NB, Lanning, DK 2008. Microbial induction of B and T cell areas in rabbit appendix. Developmental & Comparative Immunology 32, 980991.Google Scholar
Heczko, U, Abe, A, Finlay, BB 2000. Segmented filamentous bacteria prevent colonization of enteropathogenic Escherichia coli O103 in rabbits. Journal of Infectious Diseases 181, 10271033.Google Scholar
Jimenez, E, Marín, ML, Martín, R, Odriozola, JM, Olivares, M, Xaus, J, Fernández, L, Rodríguez, JM 2008 Is meconium from healthy newborns actually sterile? Research in Microbiology 159, 187193.Google Scholar
Jones, WJ, Nagle, DP, Whitman, WB 1987. Methanogens and the diversity of archaebacteria. Microbiological Reviews 51, 135177.Google Scholar
Kim, GB, Seo, YM, Kim, CH, Paik, IK 2011. Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poultry Science 90, 7582.CrossRefGoogle ScholarPubMed
Kimsé, M, Bayourthe, C, Monteils, V, Fortun-Lamothe, L, Cauquil, L, Combes, S, Gidenne, T 2012. Live yeast stability in rabbit digestive tract: Consequences on the caecal ecosystem, digestion, growth and digestive health. Animal Feed Science and Technology 173, 235243.Google Scholar
Koenig, JE, Spor, A, Scalfone, N, Fricker, AD, Stombaugh, J, Knight, R, Angenent, LT, Ley, RE 2011. Succession of microbial consortia in the developing infant gut microbiome. Proceedings of the National Academy of Sciences 108, pp. 45784585.Google Scholar
Kovács, M, Szendrõ, Z, Milisits, G, Biro-Nemeth, E, Radnai, I, Posa, R, Bónai, A, Kovács, F, Horn, P 2006. Effect of nursing method and faeces consumption on the development of bacetroides, lactobacillus and coliform flora in the caecum of the newborn rabbits. Reproduction Nutrition Development 46, 205210.Google Scholar
Kovács, M, Bónai, A, Szendrő, Z, Milisits, G, Lukács, H, Szabó-Fodor, J, Tornyos, G, Matics, Z, Kovács, F, Horn, P 2012. Effect of different weaning ages (21, 28 or 35 days) on production, growth and certain parameters of the digestive tract in rabbits. Animal 6, 894901.Google Scholar
Kušar, D, Avguštin, G 2010. Molecular profiling and identification of methanogenic archaeal species from rabbit caecum. FEMS Microbiology Ecology 74, 623630.Google Scholar
Lamendella, R, VerBerkmoes, N, Jansson, JK 2012. ‘Omics’ of the mammalian gut – new insights into function. Current Opinion in Biotechnology 23, 491500.Google Scholar
Lanning, D, Zhu, X, Zhai, S-K, Knight, KL 2000. Development of the antibody repertoire in rabbit: gut-associated lymphoid tissue, microbes, and selection. Immunological Reviews 175, 214228.Google Scholar
Ley, RE, Turnbaugh, P, Klein, S, Gordon, JI 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444, 10221023.Google Scholar
Ley, RE, Backhed, F, Turnbaugh, P, Lozupone, CA, Knight, RD, Gordon, JI 2005. Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences, USA 102, pp. 1107011075.Google Scholar
Mackie, RI 2002. Mutualistic fermentative digestion in the gastrointestinal tract: diversity and evolution. Integrative and Comparative Biology 42, 319326.Google Scholar
Mackie, RI, Sghir, A, Gaskins, HR 1999. Developmental microbial ecology of the neonatal gastrointestinal tract. American Journal of Clinical Nutrition 69, 1035S1045S.Google Scholar
Mage, RG, Lanning, D, Knight, KL 2006. B cell and antibody repertoire development in rabbits: the requirement of gut-associated lymphoid tissues. Developmental & Comparative Immunology 30, 137153.Google Scholar
Marounek, M, Fievez, V, Mbanzamihigo, L, Demeyer, D, Maertens, L 1999. Age and incubation time effects on in vitro caecal fermentation pattern in rabbits before and after weaning. Archives of Animal Nutrition 52, 195201.Google Scholar
Martignon, MH, Combes, S, Gidenne, T 2010a. Digestive physiology and hindgut bacterial community of the young rabbit (Oryctolagus cuniculus): effects of age and short-term intake limitation. Comparative Biochemistry and Physiology – Part A: Molecular & Integrative Physiology 156, 156162.Google Scholar
Martignon, MH, Reperant, E, Valat, C 2010b. Digestive response of young rabbits to an experimental reproduction of colibacillosis according to two feeding strategies, The Prato Conference on the Pathogenesis of Bacterial Diseases of Animals, Monash Prato Campus, Prato, Italy.Google Scholar
Massip, K, Combes, S, Cauquil, L, Zemb, O, Gidenne, T 2012. High throughput 16S-DNA sequencing for phylogenetic affiliation of the caecal bacterial community in the rabbit – impact of the hygiene of housing and of the intake level, VIIIth INRA-RRI Symposium on Gut Microbiology. Gut microbiota: friend or foe? Clermont-Ferrand, France, p. 57.Google Scholar
Michelland, RJ, Combes, S, Monteils, V, Cauquil, L, Gidenne, T, Fortun-Lamothe, L 2010a. Molecular analysis of the bacterial community in digestive tract of rabbit. Anaerobe 16, 6165.CrossRefGoogle ScholarPubMed
Michelland, RJ, Monteils, V, Combes, S, Cauquil, L, Gidenne, T, Fortun-Lamothe, L 2010b. Comparison of the archaeal community in the fermentative compartment and faeces of the cow and the rabbit. Anaerobe 16, 396401.Google Scholar
Michelland, R, Combes, S, Monteils, V, Cauquil, L, Gidenne, T, Fortun-Lamothe, L 2011. Rapid adaptation of the bacterial community in the growing rabbit cæcum after a change of dietary fibre supply. Animal 5, 17611768.Google Scholar
Michelland, R, Combes, S, Monteils, V, bayourthe, C, Cauquil, L, Enjalbert, F, Julien, C, kimsé, M, Troegeler-Meynadier, A, Zened, A, Gidenne, T, Fortun-Lamothe, L 2012. Analyse compararée des écosystèmes digestifs du rumen de la vache et du caecum du lapin. INRA Productions Animales 25, 395406.CrossRefGoogle Scholar
Moncomble, AS, Quennedey, B, Coureaud, G, Langlois, D, Perrier, G, Schaal, B 2004. Newborn rabbit attraction toward maternal faecal pellets, International Society for Developmental Psychobiology, 37th Annual Meeting, Aix-en-Provence, France, p. 277.Google Scholar
Monteils, V, Cauquil, L, Combes, S, Godon, J-J, Gidenne, T 2008. Potential core species and satellite species in the bacterial community within the rabbit caecum. FEMS Microbiology Ecology 66, 620629.Google Scholar
Mourao, JL, Pinheiro, V, Alves, A, Guedes, CM, Pinto, L, Saavedra, MJ, Spring, P, Kocher, A 2006. Effect of mannan oligosaccharides on the performance, intestinal morphology and cecal fermentation of fattening rabbits. Animal Feed Science and Technology 126, 107120.Google Scholar
Mulder, I, Schmidt, B, Stokes, C, Lewis, M, Bailey, M, Aminov, R, Prosser, J, Gill, B, Pluske, J, Mayer, C-D, Musk, C, Kelly, D 2009. Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces. BMC Biology 7, 79.Google Scholar
Okada, H, Kuhn, C, Feillet, H, Bach, JF 2010. The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clinical and Experimental Immunology 160, 19.Google Scholar
Oyofo, B, DeLoach, J, Corrier, D, Norman, J, Ziprin, R, Mollenhauer, H 1989. Prevention of Salmonella typhimurium colonization of broilers with D-mannose. Poultry Science 68, 13571360.Google Scholar
Padilha, MTS, Licois, D, Coudert, P 1996. Frequency of the carriage and enumeration of Escherichia coli in caecal content of 15 to 49 day old rabbits, 6th World Rabbit Congress, Toulouse, France, pp. 99–102.Google Scholar
Padilha, MTS, Licois, D, Gidenne, T, Carré, B 1999. Caecal microflora and fermentation pattern in exclusively milk-fed young rabbits. Reproduction Nutrition Development 39, 223230.Google Scholar
Padilha, MTS, Licois, D, Gidenne, T, Carré, B, Fonty, G 1995. Relationships between microflora and caecal fermentation in rabbits before and after weaning. Reproduction Nutrition Development 35, 375386.Google Scholar
Palmer, C, Bik, EM, DiGiulio, DB, Relman, DA, Brown, PO 2007. Development of the human infant intestinal microbiota. PLoS Biol 5, e177.Google Scholar
Pascual, JJ, Moya, VJ, Martinez, E, Calvo, MA, Adelantado, C, Jimenez, G, Blanch, A, Castillo, M 2008. Effects of dietary inclusion of Toyocerin (Bacillus cereus var. toyoi) on performance, health and faecal nitrogen excretion in growing rabbits, 9th World Rabbit Congress, Verona, Italy, pp. 781–785.Google Scholar
Penders, J, Thijs, C, Vink, C, Stelma, FF, Snijders, B, Kummeling, I, van den Brandt, PA, Stobberingh, EE 2006. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118, 511521.Google Scholar
Perez, JM, Gidenne, T, Bouvarel, I, Arveux, P, Bourdillon, A, Briens, C, Le Naour, J, Messager, B, Mirabito, L 2000. Replacement of digestible fibre by starch in the diet of the growing rabbit II. Effects on performances and mortality by diarrhoea. Annales de Zootechnie 49, 369377.Google Scholar
Rhee, K-J, Sethupathi, P, Driks, A, Lanning, DK, Knight, KL 2004. Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. The Journal of Immunology 172, 11181124.Google Scholar
Rodriguez-Romero, N, Abecia, L, Balcells, J, Martinez, B, Fondevila, M 2009. Comparison of bacterial profile from caecal content and caecotrophes in growing rabbits fed on two levels of indigestible fibre, XXXIX Jornadas de Estudio, XIII Jornadas sobre Produccion Animal, Zaragoza, Espana, pp. 784–786.Google Scholar
Severson, KM, Mallozzi, M, Driks, A, Knight, KL 2010. B cell development in GALT: role of bacterial superantigen-like molecules. The Journal of Immunology 184, 67826789.CrossRefGoogle ScholarPubMed
Sommer, MOA, Dantas, G 2011. Antibiotics and the resistant microbiome. Current Opinion in Microbiology 14, 556563.Google Scholar
Stappenbeck, TS, Hooper, LV, Gordon, JI 2002. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proceedings of the National Academy of Sciences, USA 99, pp. 1545115455.Google Scholar
Stewart, JA, Chadwick, VS, Murray, A 2006. Carriage, quantification, and predominance of methanogens and sulfate-reducing bacteria in faecal samples. Letters in Applied Microbiology 43, 5863.CrossRefGoogle ScholarPubMed
Thompson, CL, Holmes, AJ 2009. A window of environmental dependence is evident in multiple phylogenetically distinct subgroups in the faecal community of piglets. FEMS Microbiology Letters 290, 9197.Google Scholar
Thompson, CL, Wang, B, Holmes, AJ 2008. The immediate environment during postnatal development has long-term impact on gut community structure in pigs. The ISME Journal 2, 739748.Google Scholar
Turnbaugh, PJ, Ley, RE, Mahowald, MA, Magrini, V, Mardis, ER, Gordon, JI 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 10271131.Google Scholar
Turnbaugh, PJ, Hamady, M, Yatsunenko, T, Cantarel, BL, Duncan, A, Ley, RE, Sogin, ML, Jones, WJ, Roe, BA, Affourtit, JP, Egholm, M, Henrissat, B, Heath, AC, Knight, R, Gordon, JI 2009. A core gut microbiome in obese and lean twins. Nature 457, 480484.CrossRefGoogle ScholarPubMed
Vanhoutte, T, Huys, G, De Brandt, E, Swings, J 2004. Temporal stability analysis of the microbiota in human feces by denaturing gradient gel electrophoresis using universal and group specific 16S rRNA primers. FEMS Microbiology Ecology 48, 437446.Google Scholar
Vermorel, M 1995. Emissions annuelles de méthane d'origine digestive par les bovins en France. Variations selon le type d'animal et le niveau de production. INRA Productions Animales 8, 265272.CrossRefGoogle Scholar
Villamide, MJ, Nicodemus, N, Fraga, MJ, Carabano, R 2010. Protein digestion. In Nutrition of the rabbit (ed. C De Blas and J Wiseman), pp. 3955. CABI, Wallingford, UK.Google Scholar
Willing, BP, Russell, SL, Finlay, BB 2011. Shifting the balance: antibiotic effects on host-microbiota mutualism. Nature Reviews Microbiology 9, 233243.Google Scholar
Yang, HJ, Cao, YC, Zhang, DF 2010. Caecal fermentation patterns in vitro of glucose, cellobiose, microcrystalline cellulose and NDF separated from alfalfa hay in the adult rabbit. Animal Feed Science and Technology 162, 149154.Google Scholar
Yatsunenko, T, Rey, FE, Manary, MJ, Trehan, I, Dominguez-Bello, MG, Contreras, M, Magris, M, Hidalgo, G, Baldassano, RN, Anokhin, AP, Heath, AC, Warner, B, Reeder, J, Kuczynski, J, Caporaso, JG, Lozupone, CA, Lauber, C, Clemente, JC, Knights, D, Knight, R, Gordon, JI 2012. Human gut microbiome viewed across age and geography. Nature 486, 222–227.Google Scholar
Zdunczyk, P, Matusevicius, P, Juskiewicz, J, Jeroch, H, Jankowski, J, Zdunczyk, Z 2011. Gastrointestinal tract response to dietary probiotic (Bacillus cereus vartoyoi) and phytogenic preparation containing herbs, and spices and essential oils in growing White New Zealand rabbits. Archiv für Geflügelkunde 75, 125131.Google Scholar
Zierdt, CH, Detlefson, C, Muller, J, Waggie, KS 1988. Cyniclomyces guttulatus (Saccharomycopsis guttulata) – culture, ultrastructure and physiology. Antonie Van Leeuwenhoek 54, 357366.Google Scholar
Zoetendal, EG, Akkermans, ADL, De Vos, WM 1998. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Applied and Environmental Microbiology 64, 38543859.Google Scholar
Zoetendal, EG, von Wright, A, Vilpponen-Salmela, T, Ben-Amor, K, Akkermans, ADL, de Vos, WM 2002. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Applied and Environmental Microbiology 68, 34013407.Google Scholar