Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T11:53:22.028Z Has data issue: false hasContentIssue false

Effect of farming practices for greenhouse gas mitigation and subsequent alternative land use on environmental impacts of beef cattle production systems

Published online by Cambridge University Press:  29 November 2012

T. T. H. Nguyen
Affiliation:
INRA/Vetagro Sup, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France INRA, UMR1069 Sol Agro et hydrosystème Spatialisation, F-35000 Rennes, France Agrocampus Ouest, F-35000 Rennes, France Valorex, La Messayais, F-35210 Combourtillé, France
M. Doreau*
Affiliation:
INRA/Vetagro Sup, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France
M. Eugène
Affiliation:
INRA/Vetagro Sup, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France
M. S. Corson
Affiliation:
INRA, UMR1069 Sol Agro et hydrosystème Spatialisation, F-35000 Rennes, France Agrocampus Ouest, F-35000 Rennes, France
F. Garcia-Launay
Affiliation:
INRA/Vetagro Sup, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France Agrocampus Ouest, F-35000 Rennes, France INRA, UMR1348 Pegase, F-35590 Saint-Gilles, France
G. Chesneau
Affiliation:
Valorex, La Messayais, F-35210 Combourtillé, France
H. M. G. van der Werf
Affiliation:
INRA, UMR1069 Sol Agro et hydrosystème Spatialisation, F-35000 Rennes, France Agrocampus Ouest, F-35000 Rennes, France
*
Get access

Abstract

This study evaluated effects of farming practice scenarios aiming to reduce greenhouse gas (GHG) emissions and subsequent alternative land use on environmental impacts of a beef cattle production system using the life cycle assessment approach. The baseline scenario includes a standard cow–calf herd with finishing heifers based on grazing, and a standard bull-fattening herd using a diet mainly based on maize silage, corresponding to current farm characteristics and management by beef farmers in France. Alternative scenarios were developed with changes in farming practices. Some scenarios modified grassland management (S1: decreasing mineral N fertiliser on permanent grassland; S2: decreasing grass losses during grazing) or herd management (S3: underfeeding of heifers in winter; S4: fattening female calves instead of being reared at a moderate growth rate; S5: increasing longevity of cows from 7 to 9 years; S6: advancing first calving age from 3 to 2 years). Other scenarios replaced protein sources (S7: partially replacing a protein supplement by lucerne hay for the cow–calf herd; S8: replacing soya bean meal with rapeseed meal for the fattening herd) or increased n-3 fatty acid content using extruded linseed (S9). The combination of compatible scenarios S1, S2, S5, S6 and S8 was also studied (S10). The impacts, such as climate change (CC, not including CO2 emissions/sequestration of land use and land-use change, LULUC), CC/LULUC (including CO2 emissions of LULUC), cumulative energy demand, eutrophication (EP), acidification and land occupation (LO) were expressed per kg of carcass mass and per ha of land occupied. Compared with the baseline, the most promising practice to reduce impacts per kg carcass mass was S10 (all reduced by 13% to 28%), followed by S6 (by 8% to 10%). For other scenarios, impact reduction did not exceed 5%, except for EP (up to 11%) and LO (up to 10%). Effects of changes in farming practices (the scenarios) on environmental impacts varied according to impact category and functional unit. For some scenarios (S2, S4, S6 and S10), permanent grassland area and LO per kg of carcass decreased by 12% to 23% and 9% to 19%, respectively. If the ‘excess’ permanent grassland was converted to fast-growing conifer forest to sequester carbon in tree and soil biomass, CC/LULUC per kg of carcass could be reduced by 20%, 25%, 27% and 48% for scenarios S2, S4, S6 and S10, respectively. These results illustrate the potential of farming practices and forest as an alternative land use to contribute to short- and mid-term GHG mitigation of beef cattle production systems.

Type
Farming systems and environment
Copyright
Copyright © The Animal Consortium 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arrouays, D, Balesdent, J, Germon, JC, Jayet, PA, Soussana, JF, Stengel, P 2002. Contribution à la lutte contre l'effet de serre. Stocker du carbone dans les sols agricoles de France? Expertise scientifique collective. INRA, Paris, France.Google Scholar
Basset-Mens, C, Kelliher, FM, Ledgard, S, Cox, N 2009. Uncertainty of global warming potential for milk production on a New Zealand farm and implications for decision making. International Journal of Life Cycle Assessment 14, 630638.Google Scholar
Basset-Mens, C, van der Werf, HMG, Robin, P, Morvan, T, Hassouna, M, Paillat, JM, Vertès, F 2007. Methods and data for the environmental inventory of contrasting pig production systems. Journal of Cleaner Production 15, 13951405.CrossRefGoogle Scholar
Beauchemin, KA, Janzen, HH, Little, SM, McAllister, TA, McGinn, SM 2010. Life cycle assessment of greenhouse gas emissions from beef production in western Canada: a case study. Agricultural Systems 103, 371379.CrossRefGoogle Scholar
Beauchemin, KA, Janzen, HH, Little, SM, McAllister, TA, McGinn, SM 2011. Mitigation of greenhouse gas emissions from beef production in western Canada – evaluation using farm-based life cycle assessment. Animal Feed Science & Technology 166-167, 663677.CrossRefGoogle Scholar
Benton, TG, Vickery, JA, Wilson, JD 2003. Farmland biodiversity: is habitat heterogeneity the key? Trends in Ecology & Evolution 18, 182188.Google Scholar
CORPEN 2006. Les émissions d'ammoniac et de gaz azotés à effet de serre en agriculture. Groupe Azote. Retrieved October 15, 2010, from http://www.developpement-durable.gouv.fr/IMG/pdf/DGALN_2006_10_ammoniac_gaz_azote.pdfGoogle Scholar
Crosson, P, Shalloo, L, O'Brien, D, Lanigan, GJ, Foley, PA, Boland, TM, Kenny, DA 2011. A review of whole farm systems models of greenhouse gas emissions from beef and dairy cattle production systems. Animal Feed Science & Technology 166-167, 2945.Google Scholar
Dawson, JJC, Smith, P 2007. Carbon losses from soil and its consequences for land-use management. Science of the Total Environment 382, 165190.CrossRefGoogle ScholarPubMed
del Prado, A, Chadwick, D, Cardenas, L, Misselbrook, T, Scholefield, D, Merino, P 2010. Exploring systems responses to mitigation of GHG in UK dairy farms. Agriculture Ecosystems & Environment 136, 318332.Google Scholar
Eckard, RJ, Grainger, C, de Klein, CAM 2010. Options for the abatement of methane and nitrous oxide from ruminant production: a review. Livestock Science 130, 4756.Google Scholar
Farrié, JP, Renon, J, Bourge, C, Gros, JM, Lahemade, T, Muron, G, Roudier, J 2008. Conditions et conséquences de la mise en place du vêlage à deux ans dans un troupeau charolais. Rencontres autour des Recherches sur les Ruminants 15, 147150.Google Scholar
Foley, PA, Crosson, P, Lovett, DK, Boland, TM, O'Mara, FP, Kenny, DA 2011. Whole-farm systems modelling of greenhouse gas emissions from pastoral suckler beef cow production systems. Agriculture Ecosystems & Environment 142, 222230.CrossRefGoogle Scholar
Flysjö, A, Henriksson, M, Cederberg, C, Ledgard, S, Englund, JE 2011. The impact of various parameters on the carbon footprint of milk production in New Zealand and Sweden. Agricultural Systems 104, 459469.Google Scholar
Gill, M, Smith, P, Wilkinson, JM 2010. Mitigating climate change: the role of domestic livestock. Animal 4, 323333.CrossRefGoogle ScholarPubMed
Henriksson, M, Flysjö, A, Cederberg, C, Swensson, C 2011. Variation in carbon footprint of milk due to management differences between Swedish dairy farms. Animal 5, 14741484.Google Scholar
Hoch, T, Agabriel, J 2004. A mechanistic dynamic model to estimate beef cattle growth and body composition: model evaluation. Agricultural Systems 81, 1735.CrossRefGoogle Scholar
INRA 2007. Alimentation des bovins, ovins et caprins. Besoins des animaux, valeurs des aliments. Tables INRA 2007. Quae, Versailles, France.Google Scholar
Intergovernmental Panel on Climatic Change (IPCC) 2006. IPCC Guidelines for National Greenhouse Gas Inventories. Agriculture, Forestry and Other Land Use. Prepared by the National Greenhouse Gas Inventories Programme (ed. HS Egglestone, L Buendia, K Miwa, T Ngara and K Tanabe), vol. 4, chapter 10 (pp. 10.1–10.87) and chapter 11 (pp. 11.1–11.54). Institute for Global Environmental Strategies, Hayama, Japan.Google Scholar
Joannic, D, Fossé, JL, Charon, C 2011. Guide pratique de l’éleveur: Produire avec de l'herbe du sol à l'animal. Chambres d'Agriculture Bretagne et Pays de la Loire, Rennes, France.Google Scholar
Jungbluth, N, Chudacoff, M, Dauriat, A, Dinkel, F, Doka, G, Faist Emmenegger, M, Gnansounou, E, Kljun, N, Schleiss, K, Spielmann, M, Stettler, C, Sutter, J 2007. Life Cycle Inventories of Bioenergy. Ecoinvent report No 17. Swiss Centre for the Life Cycle inventories, Dübendorf, Switzerland.Google Scholar
Martin, C, Morgavi, DP, Doreau, M 2010. Methane mitigation in ruminants: from the rumen microbes to the farm scale. Animal 4, 351365.Google Scholar
Nemecek, T, Kägi, T 2007. Life cycle inventories of Swiss and European Agricultural production systems. Final report ecoinvent No 15. Agroscope Reckenholz Taenikon Research Station ART, Swiss Centre for life cycle inventories, Zurich and Dübendorf, Switzerland.Google Scholar
Nguyen, TTH, van der Werf, HMG, Eugène, M, Veysset, P, Devun, J, Chesneau, G, Doreau, M 2012a. Effects of type of ration and allocation methods on the environmental impacts of beef-production systems. Livestock Science 145, 239251.Google Scholar
Nguyen, TTH, van der Werf, HMG, Doreau, M 2012b. Life cycle assessment of three bull-fattening systems: effect on ranking of impact categories. Journal of Agricultural Science 150, 755763.Google Scholar
PAS 2050 2008. Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. British Standard, Department for Environment Food and Rural Affairs and Carbon Trust. British Standards Institute, London.Google Scholar
Payraudeau, S, van der Werf, HMG, Vertès, F 2007. Analysis of the uncertainty associated with the estimation of nitrogen losses from farming systems. Agricultural Systems 94, 416430.Google Scholar
Pelletier, N, Pirog, R, Rasmussen, R 2010. Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States. Agricultural Systems 103, 380389.Google Scholar
Prudêncio da Silva, V, van der Werf, HMG, Spies, A, Soares, SR 2010. Variability in environmental impacts of Brazilian soybean according to crop production and transport scenarios. Journal of Environmental Management 91, 18311839.CrossRefGoogle Scholar
Smith, P 2005. An overview of the permanence of soil organic carbon stocks: influence of direct human-induced, indirect and natural effects. European Journal of Soil Science 56, 673680.Google Scholar
Steinfeld, H, Mooney, HA, Schneider, F, Neville, LE 2010. Livestock in a changing landscape: drivers, consequences, and responses. Island Press, Washington, DC.Google Scholar
Steinfeld, H, Gerber, P, Wassenaar, T, Castel, V, Rosales, M, De Haan, C 2006. Livestock's long shadow: environmental issues and options. FAO, Rome, 390 p.Google Scholar
Stewart, AA, Little, SM, Ominski, KH, Wittenburg, KM, Janzen, HH 2009. Evaluating greenhouse gas mitigation practices in livestock systems: an illustration of a whole-farm approach. Journal of Agricultural Science 147, 367382.CrossRefGoogle Scholar
Tuomisto, HL, Hodge, ID, Riordan, P, Macdonald, DW 2012. Comparing energy balances, greenhouse gas balances and biodiversity impacts of contrasting farming systems with alternative land uses. Agricultural Systems 108, 4249.Google Scholar
Vallet, P, Meredieu, C, Seynave, I, Bélouard, T, Dhôte, JF 2009. Species substitution for carbon storage: Sessile oak v. Corsican pine in France as a case study. Forest Ecology & Management 257, 13141323.Google Scholar
Vellinga, TV, de Haan, MHA, Schils, RLM, Evers, A, van den Pol–van Dasselaar, A 2011. Implementation of GHG mitigation on intensive dairy farms: farmers’ preferences and variation in cost effectiveness. Livestock Science 137, 185195.Google Scholar
Vermorel, M, Jouany, JP, Eugène, M, Sauvant, D, Noblet, J, Dourmad, JY 2008. Evaluation quantitative des émissions de méthane entérique par les animaux d’élevage en 2007 en France. INRA Productions Animales 21, 403418.Google Scholar
Vertès, F, Simon, JC, Laurent, F, Besnard, A 2007. Prairies et qualité de l'eau. Evaluation des risques de lixivation d'azote et optimisation des pratiques. Fourrages 192, 423440.Google Scholar
Supplementary material: File

Nguyen Supplementary Material

Appendix

Download Nguyen Supplementary Material(File)
File 86 KB