Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T08:56:53.188Z Has data issue: false hasContentIssue false

Dissection of ancestral genetic contributions to Creole goat populations

Published online by Cambridge University Press:  08 January 2018

N. Sevane*
Affiliation:
Departamento de Producción Animal, Universidad Complutense de Madrid, Spain
O. Cortés
Affiliation:
Departamento de Producción Animal, Universidad Complutense de Madrid, Spain
L. T. Gama
Affiliation:
CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Portugal
A. Martínez
Affiliation:
Departamento de Genética, Universidad de Córdoba, Córdoba, Spain Animal Breeding Consulting SL, Cordoba, Spain
P. Zaragoza
Affiliation:
Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Universidad de Zaragoza, Spain
M. Amills
Affiliation:
Department of Animal Genetics, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Universitat Autònoma de Barcelona, Bellaterra, Spain
D. O. Bedotti
Affiliation:
INTA, EEA Anguil “Ing. Agr. Guillermo Covas”, Argentina
C. Bruno de Sousa
Affiliation:
Centro de Ciências do Mar, Instituto de Higiene e Medicina Tropical (UPMM) – UNL, Universidade do Algarve, Portugal
J. Cañon
Affiliation:
Departamento de Producción Animal, Universidad Complutense de Madrid, Spain
S. Dunner
Affiliation:
Departamento de Producción Animal, Universidad Complutense de Madrid, Spain
C. Ginja
Affiliation:
Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-InBIO), Universidade do Porto, Campus Agrário de Vairão, Portugal
M. R. Lanari
Affiliation:
Area de Producción Animal, INTA EEA, Bariloche, Argentina
V. Landi
Affiliation:
Departamento de Genética, Universidad de Córdoba, Córdoba, Spain Animal Breeding Consulting SL, Cordoba, Spain
P. Sponenberg
Affiliation:
Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
J. V. Delgado
Affiliation:
Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
The BioGoat Consortium
Affiliation:
Departamento de Producción Animal, Universidad Complutense de Madrid, Spain CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Portugal Departamento de Genética, Universidad de Córdoba, Córdoba, Spain Animal Breeding Consulting SL, Cordoba, Spain Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Universidad de Zaragoza, Spain Department of Animal Genetics, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Universitat Autònoma de Barcelona, Bellaterra, Spain INTA, EEA Anguil “Ing. Agr. Guillermo Covas”, Argentina Centro de Ciências do Mar, Instituto de Higiene e Medicina Tropical (UPMM) – UNL, Universidade do Algarve, Portugal Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-InBIO), Universidade do Porto, Campus Agrário de Vairão, Portugal Area de Producción Animal, INTA EEA, Bariloche, Argentina Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
*
Get access

Abstract

Goats have played a key role as source of nourishment for humans in their expansion all over the world in long land and sea trips. This has guaranteed a place for this species in the important and rapid episode of livestock expansion triggered by Columbus’ arrival in the Americas in the late 1400s. The aims of this study are to provide a comprehensive perspective on genetic diversity in American goat populations and to assess their origins and evolutionary trajectories. This was achieved by combining data from autosomal neutral genetic markers obtained in more than two thousand samples that encompass a wide range of Iberian, African and Creole goat breeds. In general, even though Creole populations differ clearly from each other, they lack a strong geographical pattern of differentiation, such that populations of different admixed ancestry share relatively close locations throughout the large geographical range included in this study. Important Iberian signatures were detected in most Creole populations studied, and many of them, particularly the Cuban Creole, also revealed an important contribution of African breeds. On the other hand, the Brazilian breeds showed a particular genetic structure and were clearly separated from the other Creole populations, with some influence from Cape Verde goats. These results provide a comprehensive characterisation of the present structure of goat genetic diversity, and a dissection of the Iberian and African influences that gave origin to different Creole caprine breeds, disentangling an important part of their evolutionary history. Creole breeds constitute an important reservoir of genetic diversity that justifies the development of appropriate management systems aimed at improving performance without loss of genomic diversity.

Type
Research Article
Copyright
© The Animal Consortium 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amills, M, Ramírez, O, Tomàs, A, Badaoui, B, Marmi, J, Acosta, J, Sànchez, A and Capote, J 2009. Mitochondrial DNA diversity and origins of South and Central American goats. Animal Genetics 40, 315322.Google Scholar
Belkhir, K, Borsa, P, Chikhi, L, Raufaste, N and Bonhomme, F 2004. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Université de Montpellier II. Retrieved on 15 November 2015 from http://kimura.univ-montp2.fr/genetix/ Google Scholar
Cañón, J, García, D, García-Atance, MA, Obexer-Ruff, G, Lenstra, JA, Ajmone-Marsan, P, Dunner, S and ECONOGENE Consortium 2006. Geographical partitioning of goat diversity in Europe and the Middle East. Animal Genetics 37, 327334.Google Scholar
Evanno, G, Regnaut, S and Goudet, J 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 26112620.Google Scholar
FAO Commission on Genetic Resources for Food and Agriculture 2011. Molecular genetic characterization of animal genetic resources. FAO Animal Production and Health Guidelines. No 9, Rome. Retrieved 10 December 2015 from http://www.fao.org/docrep/014/i2413e/i2413e00.pdf.Google Scholar
Felsenstein, J 2004. Inferring phylogenies. Sinauer Associates Inc., Sunderland, MA, USA.Google Scholar
Ferrando, A, Manunza, A, Jordana, J, Capote, J, Pons, A, Pais, J, Delgado, T, Atoche, P, Cabrera, B, Martínez, A, Landi, V, Delgado, JV, Argüello, A, Vidal, O, Lalueza-Fox, C, Ramírez, O and Amills, M 2015. A mitochondrial analysis reveals distinct founder effect signatures in Canarian and Balearic goats. Animal Genetics 46, 452456.Google Scholar
Gautier, M and Naves, M 2011. Footprints of selection in the ancestral admixture of a New World Creole cattle breed. Molecular Ecology 20, 31283143.Google Scholar
Ginja, C, Gama, LT, Martínez, A, Sevane, N, Martin-Burriel, I, Lanari, MR, Revidatti, MA, Aranguren-Méndez, JA, Bedotti, DO, Ribeiro, MN, Sponenberg, P, Aguirre, EL, Alvarez-Franco, LA, Menezes, MPC, Chacón, E, Galarza, A, Gómez-Urviola, N, Martínez-López, OR, Pimenta-Filho, EC, da Rocha, LL, Stemmer, A, Landi, V and Delgado-Bermejo, JV 2017. Genetic diversity of Creole goats and patterns of population structure reflect the mode of goat colonization in the Americas. Animal Genetics 48, 315329.Google Scholar
Ginja, C, Cortés, O, Gama, LT, Delgado, JV, Amills, M, Bruno de Sousa, C, Cañón, J, Capote, J, Dunner, S, Ferrando, A, Gómez Carpio, M, Jordana, J, Landi, V, Manunza, A, Martin-Burriel, I, Pons Barro, A, Rodellar, C, Santos-Silva, F, Sevane, N, Vidal, O, Zaragoza, P, Martínez, AM (2018). Conservation of goat populations from Southwestern Europe based on molecular diversity criteria. In Sustainable goat production in adverse environments – welfare, health and breeding. (ed. J Simões and C Gutierrez), Vol. I. Chapter 29. Springer (in press).Google Scholar
Goudet, J 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Lausanne University. Retrieved 4 March 2015 from http://www2.unil.ch/popgen/softwares/fstat.htm Google Scholar
Huson, DH and Bryant, D 2006. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23, 254267.Google Scholar
Li, MH, Zhao, SH, Bian, C, Wang, HS, Wei, H, Liu, B, Yu, M, Fan, B, Chen, SL, Zhu, MJ, Li, SJ, Xiong, TA and Li, K 2002. Genetic relationships among twelve Chinese indigenous goat populations based on microsatellite analysis. Genetics Selection and Evolution 34, 729744.Google Scholar
Martínez, AM, Gama, LT, Cañón, J, Ginja, C, Delgado, JV, Dunner, S, Landi, V, Martín-Burriel, I, Penedo, MC, Rodellar, C, Vega-Pla, JL, Acosta, A, Alvarez, LA, Camacho, E, Cortés, O, Marques, JR, Martínez, R, Martínez, RD, Melucci, L, Martínez-Velázquez, G, Muñoz, JE, Postiglioni, A, Quiroz, J, Sponenberg, P, Uffo, O, Villalobos, A, Zambrano, D and Zaragoza, P 2012. Genetic footprints of Iberian cattle in America 500 years after the arrival of Columbus. PloS One 7, e49066.Google Scholar
Martínez, AM, Gama, LT, Delgado, JV, Cañón, J, Amills, M, de Sousa, CB, Ginja, C, Zaragoza, P, Manunza, A, Landi, V, Sevane, N and BioGoat Consortium 2015. The Southwestern fringe of Europe as an important reservoir of caprine biodiversity. Genetics Selection and Evolution 47, 86.Google Scholar
Martínez, A, Manunza, A, Delgado, JV, Landi, V, Adebambo, A, Ismaila, M, Capote, J, El Ouni, M, Elbeltagy, A, Abushady, AM, Galal, S, Ferrando, A, Gómez, M, Pons, A, Badaoui, B, Jordana, J, Vidal, O and Amills, M 2016. Detecting the existence of gene flow between Spanish and North African goats through a coalescent approach. Scientific Reports 6, 38935.Google Scholar
Naderi, S, Rezaei, HR, Taberlet, P, Zundel, S, Rafat, SA, Naghash, HR, el-Barody, MA, Ertugrul, O, Pompanon, F and Econogene Consortium 2007. Large-scale mitochondrial DNA analysis of the domestic goat reveals six haplogroups with high diversity. PloS ONE 2, e1012.Google Scholar
O’Flanagan, P 2008. Port cities of Atlantic Iberia, c. 1500–1900. Ashgate Publishing Limited, Surrey, UK.Google Scholar
Park, SDE 2001. Trypanotolerance in west African cattle and the population genetic effects of selection. University of Dublin, Ireland.Google Scholar
Pereira, F, Queirós, S, Gusmão, L, Nijman, IJ, Cuppen, E, Lenstra, JA, Econogene Consortium, Davis, SJ, Nejmeddine, F and Amorim, A 2009. Tracing the history of goat pastoralism: new clues from mitochondrial and Y chromosome DNA in North Africa. Molecular Biology and Evolution 26, 27652773.Google Scholar
Primo, AT 2004. América: conquista e colonização. Movimento, Porto Alegre, Brazil.Google Scholar
Pritchard, JK, Stephens, M and Donnelly, P 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945959.Google Scholar
Raymond, M and Rousset, F 1995. GENEPOP (Version 1.2): population genetics software for exact test and ecumenicism. Journal of Heredity 86, 248249.Google Scholar
Ribeiro, MN, Bruno-de-Sousa, C, Martinez-Martinez, A, Ginja, C, Menezes, MP, Pimenta-Filho, EC, Delgado, JV and Gama, LT 2012. Drift across the Atlantic: genetic differentiation and population structure in Brazilian and Portuguese native goat breeds. Journal of Animal Breeding and Genetics 129, 7987.Google Scholar
Rodero, A, Delgado, JV and Rodero, E 1992. Primitive Andalusian livestock and their implications in the discovery of America. Archivos de Zootecnia 41, 383400.Google Scholar
Rosenberg, NA 2004. DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes 4, 137138.Google Scholar
Rosenberg, NA, Pritchard, JK, Weber, JL, Cann, HM, Kidd, KK, Zhivotovsky, LA and Feldman, MW 2002. Genetic structure of human populations. Science 298, 23812385.Google Scholar
Tapio, M, Ozerov, M, Tapio, I, Toro, MA, Marzanov, N, Cinkulov, M, Goncharenko, G, Kiselyova, T, Murawski, M and Kantanen, J 2010. Microsatellite-based genetic diversity and population structure of domestic sheep in northern Eurasia. BMC Genetics 10, 1176.Google Scholar
Walsh, PS, Metzger, DA and Higushi, R 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10, 506513.Google Scholar
Wang, J 2003. Maximum-likelihood estimation of admixture proportions from genetic data. Genetics 164, 747765.Google Scholar
Wei, C, Lu, J, Xu, L, Liu, G, Wang, Z, Zhao, F, Zhang, L, Han, X, Du, L and Liu, C 2014. Genetic structure of Chinese indigenous goats and the special geographical structure in the Southwest China as a geographic barrier driving the fragmentation of a large population. PLoS One 9, e94435.Google Scholar
Weir, BS and Cockerham, CC 1984. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358.Google Scholar
Supplementary material: File

Sevane et al. supplementary material

Sevane et al. supplementary material 1

Download Sevane et al. supplementary material(File)
File 2.2 MB