No CrossRef data available.
Published online by Cambridge University Press: 22 October 2018
Optimal type and dietary inclusion rates of cereal grains for periparturient sheep are unknown. The objective was to determine effects of feeding diets with high (H) v. low (L) levels of ground corn grain (CN) v. combined ground wheat and barley grains (WB) on intake, rumen fermentation, colostrum and milk properties, and blood metabolites of periparturient sheep. Twenty Afshari×Merino ewes were used in a completely randomized design study from 24 days prepartum through 21 days postpartum. Ewes were kept indoors in individual boxes and received once daily at 0900 h total mixed rations. Treatments were mixed rations containing either (1) H or (2) L concentrate based on either (1) 100% CN or (2) 50 : 50 ratio of ground wheat : ground barley grains in a 2×2 factorial arrangement. Each treatment group had five ewes including two twin-lamb ewes and three single-lamb ewes. Postpartal dry matter intake (DMI) increased by feeding high CN v. high and low WB, while high v. low CN improved postpartum DMI. The DMI during lambing tended to increase with the high v. low WB. Feeding CN v. WB, and feeding both CN and WB at L v. H level increased fecal pH. Postpartal rumen pH was lower with the high v. low WB (5.7 v. 6.2). Rumen concentrations of propionate were lower and of acetate were higher with L v. H grain levels. Increased dietary grain reduced urine pH for WB (7.24 v. 7.83) but not for CN (7.63 v. 7.52) prepartum. Colostrum properties, postpartal urine pH, lamb weight at birth and 21 days of age, and placental weight and expulsion time were unaffected. Milk yield increased and milk fat yield tended to increase by H v. L grain diets. Plasma glucose was increased by feeding high v. low WB, whereas CN v. WB tended to reduce peripartal plasma non-esterified fatty acids (NEFA) and increased insulin to NEFA ratio. In conclusion, more cereal grains can be included in periparturient sheep diets and CN instead of WB may be fed to periparturient sheep to improve energy status. Findings suggest opportunities to optimize periparturient ewe physiology and performance through feeding certain cereals and avoiding high levels of WB.