Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T16:32:01.520Z Has data issue: false hasContentIssue false

Anaerobic digestion of agricultural and other substrates – implications for greenhouse gas emissions

Published online by Cambridge University Press:  06 June 2013

J. Pucker*
Affiliation:
JOANNEUM RESEARCH, Resources – Institute for Water, Energy and Sustainability, Leonhardstraße 59, 8010 Graz, Austria
G. Jungmeier
Affiliation:
JOANNEUM RESEARCH, Resources – Institute for Water, Energy and Sustainability, Leonhardstraße 59, 8010 Graz, Austria
S. Siegl
Affiliation:
Department for Agrobiotechnology, University of Natural Resources and Life Sciences, Konrad-Lorenz Str. 20, Vienna, 3430 Tulln, Austria
E. M. Pötsch
Affiliation:
Agricultural Research and Education Centre Raumberg-Gumpenstein, Altirdning 11, 8952 Irdning, Austria
*
Get access

Abstract

The greenhouse gas (GHG) emissions, expressed in carbon dioxide equivalents (CO2-eq), of different Austrian biogas systems were analyzed and evaluated using life-cycle assessment (LCA) as part of a national project. Six commercial biogas plants were investigated and the analysis included the complete process chain: viz., the production and collection of substrates, the fermentation of the substrates in the biogas plant, the upgrading of biogas to biomethane (if applicable) and the use of the biogas or biomethane for heat and electricity or as transportation fuel. Furthermore, the LCA included the GHG emissions of construction, operation and dismantling of the major components involved in the process chain, as well as the use of by-products (e.g. fermentation residues used as fertilizers). All of the biogas systems reduced GHG emissions (in CO2-eq) compared with fossil reference systems. The potential for GHG reduction of the individual biogas systems varied between 60% and 100%. Type of feedstock and its reference use, agricultural practices, coverage of storage tanks for fermentation residues, methane leakage at the combined heat and power plant unit and the proportion of energy used as heat were identified as key factors influencing the GHG emissions of anaerobic digestion processes.

Type
Full Paper
Copyright
Copyright © The Animal Consortium 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amon, B, Kryvoruchko, V, Amon, T, Zechmeister-Boltenstern, S 2006. Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agriculture, Ecosystems & Environment 112, 153162.Google Scholar
Amon, B, Moitzi, C, Wagner-Alt, C, Kryvoruchko, V, Amon, T, Boxberger, J 2002. Methane, nitrous oxide and ammonia emissions from management of liquid manures. Austrian Federal Ministry of Agriculture and Forestry, Environment and Water Management, Vienna, Austria.Google Scholar
Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management Ed. 2005. Stand der Technik der Kompostierung Grundlagenstudie. Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management, Vienna, Austria. Retrieved December 7, 2012, from http://www.lebensministerium.at/umwelt/abfall-ressourcen/behandlung-verwertung/behandlung-biotechnisch/richtlinie_sdt.html.Google Scholar
Bird, N, Cowie, A, Cherubini, F, Jungmeier, G 2011. Using Life Cycle Assessment Approach to Estimate the Net Greenhouse Gas Emissions of Bioenergy. IEA Bioenergy Task 38. Retrieved April 11, 2013, from http://www.ieabioenergy.com/MediaItem.aspx?id=7099.Google Scholar
Bundesforschungsanstalt für Landwirtschaft 2005. Ergebnisse des Biogas-Messprogramms. Fachagentur Nachwachsende Rohstoffe e.V. (FNR), Gülzow, Germany.Google Scholar
Clemens, J, Trimborn, M, Weiland, P, Amon, B 2006. Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agriculture, Ecosystems & Environment 112, 171177.Google Scholar
Edelmann, W, Schleiss, K, Engeli, H, Baier, U 2001. Ökobilanz der Stromgewinnung aus landwirtschaftlichem Biogas. Arbeitsgemeinschaft Bioenergie, Baar, Germany.Google Scholar
Eggleston, HS, Buendia, L, Miwa, K, Ngara, T, Tanabe, K 2006. 2006 IPCC guidelines for national greenhouse gas inventories. Volume 4: agriculture, forestry and other land use. IPPC National Greenhouse Gas Inventories Programme IGES, Hayama, Japan.Google Scholar
Energie Control GmbH 2009. Gesamt Versorgung Kalenderjahr 2007 Datenstand Oktober 2009. Retrieved April 13, 2010, from http://www.e-control.at.Google Scholar
Environment Agency Austria 2009a. Austrias National Inventory Report 2009, Submission under the United Nations Framework Convention on Climate Change. Vienna, Austria.Google Scholar
Environment Agency Austria 2009b. GEMIS-Austria – global emission model of integrated systems Austrians data set for version 4.5, Vienna, Austria.Google Scholar
Hersener, JL, Meier, U, Dinkel, F 2002. Ammoniakemissionen aus Gülle und deren Minderungsmaßnahmen unter besonderer Berücksichtigung der Vergärung. Amt für Umweltschutz Kanton Luzern Bundesamt für Energie, Luzern, Switzerland.Google Scholar
Hochmair, K 2010. Die Bedeutung der erneuerbaren Energien im österreichischen Strommix der Zukunft. In Proceedings EnInnov 2010–11. Symposium Energieinnovation, February 10–12, 2010, Graz, Austria.Google Scholar
Houghton, JT, Meira Filho, LG, Lim, B, Trèanton, K, Mamaty, I, Bonduki, Y, Griggs, DG, Callander, BA 1996. Revised 1996 IPCC guidelines for national greenhouse gas inventories. IPCC WGI Technical Support Unit, Bracknell, UK.Google Scholar
Hüther, L, Schuchardt, F 1998. Einflußfaktoren auf die Schadgasfreisetzung bei der Lagerung/Kompostierung tierischer Exkremente. Selbstverlag der Bundesforschungsanstalt für Landwirtschaft Braunschweig-Völkenrode (FAL), Braunschweig, Germany.Google Scholar
Institute for Applied Ecology 2009. Global Emission Model for Integrated Systems (GEMIS). Version 4.5. Öko-Institut. Darmstadt, Germany. Retrieved May 7, 2009, from http://www.oeko.de/service/gemis/de/index.htmGoogle Scholar
Kaltschmitt, M, Streicher, W 2009. Regenerative Energien in Österreich, Grundlagen, Systemtechnik, Umweltaspekte, Kostenanalysen, Potenziale, Nutzung, 1st edition. Vieweg+Teubner, Wiesbaden, Germany.Google Scholar
Kaparaju, PLN, Rintala, JA 2003. Effects of temperature on post-methanation of digested dairy cow manure in a farm-scale biogas production system. Environmental Technology 24, 13151321.CrossRefGoogle Scholar
Kryvoruchko, V 2004. Methanbildungspotential von Wirtschaftsdüngern aus der Rinderhaltung und der Wirkung der Abdeckung und anaeroben Behandlung auf klimarelevante Emissionen bei der Lagerung von Milchviehflüssigmist. Thesis PhD. University of Natural Resources and Life Sciences, Vienna, Austria.Google Scholar
Külling, D, Menzi, H, Neftel, K, Sutter, P, Lischer, P, Kreuzer, M 2001. Emission of ammonia, nitrous oxide and methane from different types of dairy manure during storage as affected by dietary protein content. Journal of Agricultural Science 137, 235250.Google Scholar
Laaber, M, Madlener, M, Brachtl, E, Kirchmayr, R 2007. Aufbau eines Bewertungssystems für Biogasanlagen – Gütesiegel Biogas. Energiesysteme der Zukunft, Vienna, Austria.Google Scholar
Landeskammer für Land- und Forstwirtschaft Steiermark 1994–2011. Landwirtschaftliche Versuchsberichte. Landwirtschaftskammer Steiermark, Graz, Austria.Google Scholar
Lukehurst, CT, Frost, P, Al Seadi, T 2010. Utilisation of digestate from biogas plants as biofertilizer. IEA Bioenergy Task 37. Retrieved April 5, 2011, from http://www.iea-biogas.net/_content/publications/publications.php.Google Scholar
Meyer-Aurich, A, Schattauer, A, Hellebrand, HJ, Klauss, H, Plöchl, M, Berg, W 2012. Impact of uncertainties on greenhouse gas mitigation potential of biogas production from agricultural resources. Renewable Energy 37, 277284.Google Scholar
Olesen, JE, Weiske, A, Asman, WA, Weisbjerg, MR, Djurhuus, J, Schelde, K 2004. FarmGHG. A model for estimating greenhouse gas emissions from livestock farms: documentation. DJF Internal Report No. 202, Aarhus, Denmark.Google Scholar
Pucker, J, Jungmeier, G, Siegl, S, Pötsch, EM, Stuhlbacher, A, Ebner-Ornig, FJ, Kirchmayr, R, Bochmann, G 2010. Ökobilanz Biogas – Erfolgsfaktoren zur nachhaltigen Nutzung der Biogastechnologie am Beispiel ausgewählter Biogasanlagen. Joanneum Research, Graz, Austria.Google Scholar
Ross, A, Fübekker, A, Seipelt, F, Steffens, G, Kowalwky, H 1999. Quantifizierung der Freisetzung von klimarelevanten Gasen aus Güllebehältern mit und ohne Strohhäckselabdeckaung. UBA Texte, Berlin, Germany.Google Scholar
Schimpl, M 2001. Die Wirkung von Flüssigmistzusätzen auf die Emission der klima- und umweltrelevanten Gase Methan, Ammoniak, Lachgas und Kohlendioxid während der Lagerung von Rinderflüssigmist. Thesis Master. University of Natural Resources and Life Sciences, Vienna, Austria.Google Scholar
Solomon, S, Qin, D, Manning, M, Chen, Z, Marquis, M, Averyt, KB, Tignos, M 2007. Climate change 2007: the physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, United Kingdom and New York, NY, USA.Google Scholar
Sommer, SG, Hutchings, NJ 2001. Ammonia emission from field applied manure and its reduction – invited paper. European Journal of Agronomy 14, 123133.CrossRefGoogle Scholar
Sommer, SG, Petersen, SO, Sogaard, HT 2000. Greenhouse gas emission from stored livestock slurry. Journal of Environmental Quality 29, 744751.Google Scholar
Theißing, M 2006. Biogas-Einspeisung und Systemintegration in bestehende Gasnetze. Federal Ministry for Transport, Innovation and Technology, Vienna, Austria.Google Scholar
Vogt, R 2008. Basisdaten zu THG-Bilanzen für Biogas-Prozessketten und Erstellung neuer THG-Bilanzen. ifeu-Institut für Energie- und Umweltforschung Heidelberg GmbH. Retrived April 12, 2013, from http://www.ifeu.de/index.php?bereich=oek&seite=THG_bilanzen_biogas.Google Scholar
Woess, S, Bird, N, Enzinger, P, Jungmeier, G, Padinger, R, Pena, N, Zanchi, G 2011. Greenhouse gas benefits of a biogas plant in Austria. IEA Bioenergy Task 38 Case Study Report. Retrieved April 12, 2013, from http://www.ieabioenergy-task38.org/projects/task38casestudies/.Google Scholar
Wulf, S, Meating, M, Clemens, J 2002. Application technique and slurry co-fermentation effects on ammonia, nitrous oxide and methane emissions after spreading: II Greenhouse gas emissions. Journal of Environmental Quality 31, 17951801.Google Scholar
Wulf, S, Jager, P, Döhler, H 2005. Balancing of greenhouse gas emissions and economic efficiency for biogas production through anaerobic cofermentation of slurry with organic waste. Agriculture, Ecosystems & Environment 112, 178185.Google Scholar