Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T15:03:09.188Z Has data issue: false hasContentIssue false

Nitrogen metabolism and protein requirements for maintenance of growing Red Norte bulls

Published online by Cambridge University Press:  14 October 2019

T. R. Amorim
Affiliation:
Faculty of Animal Science and Food Engineering, Universidade de São Paulo, Av. Duque de Caxias Norte, 225 – Zona Rural, Pirassununga, São Paulo 13635-900, Brazil Department of Animal Science, Universidade Federal de Lavras, Avenida Sul UFLA – Aquenta Sol, Lavras, Minas Gerais 37200-000, Brazil
A. L. Silva
Affiliation:
Department of Animal Science, Universidade Federal de Viçosa, Avenida PH Rolfs, s/n, Viçosa, Minas Gerais 36570-900, Brazil
M. M. Ladeira
Affiliation:
Department of Animal Science, Universidade Federal de Lavras, Avenida Sul UFLA – Aquenta Sol, Lavras, Minas Gerais 37200-000, Brazil
M. L. Chizzotti
Affiliation:
Department of Animal Science, Universidade Federal de Viçosa, Avenida PH Rolfs, s/n, Viçosa, Minas Gerais 36570-900, Brazil
C. S. Cunha
Affiliation:
Department of Animal Science, Universidade Federal de Viçosa, Avenida PH Rolfs, s/n, Viçosa, Minas Gerais 36570-900, Brazil
O.R. Machado Neto
Affiliation:
College of Veterinary Medicine and Animal Science, Universidade Estadual Paulista ‘Júlio de Mesquita Filho’, Rua Prof. Dr. Walter Mauricio Corrêa, s/n – Rubião Junior, Botucatu, São Paulo 18610-307, Brazil;
J. R. R. Carvalho
Affiliation:
Department of Animal Science, Universidade Federal de Lavras, Avenida Sul UFLA – Aquenta Sol, Lavras, Minas Gerais 37200-000, Brazil
R. R. P. S. Corte
Affiliation:
Faculty of Animal Science and Food Engineering, Universidade de São Paulo, Av. Duque de Caxias Norte, 225 – Zona Rural, Pirassununga, São Paulo 13635-900, Brazil
L. F. Mueller
Affiliation:
Faculty of Animal Science and Food Engineering, Universidade de São Paulo, Av. Duque de Caxias Norte, 225 – Zona Rural, Pirassununga, São Paulo 13635-900, Brazil
A. S. C. Pereira
Affiliation:
Faculty of Animal Science and Food Engineering, Universidade de São Paulo, Av. Duque de Caxias Norte, 225 – Zona Rural, Pirassununga, São Paulo 13635-900, Brazil
M. I. Marcondes*
Affiliation:
Department of Animal Science, Universidade Federal de Viçosa, Avenida PH Rolfs, s/n, Viçosa, Minas Gerais 36570-900, Brazil
*
Get access

Abstract

Dietary protein adjustments can reduce environmental impact and economic losses in production systems. However, we lack information regarding nitrogen (N) metabolism and protein requirements for maintenance of crossbred animals such as Red Norte breed, precluding a precise dietary management. The objective was to evaluate the effect of increasing dietary CP levels (9%, 11%, 13%, 15% and 17%) on intake, digestibility and N balance, as well as to estimate the metabolizable protein requirements for maintenance (MPm) of growing Red Norte bulls. Thirty five animals averaging 280 ± 4.0 kg BW were fed during 45 days in a 60 : 40 forage : concentrate ratio diet in which the last 5 days were used for the digestibility trial. Intakes of CP and non-fibrous carbohydrates (NFCs) and feed efficiency linearly increased (P < 0.05) as CP levels increased, while DM, NDF, nitrogen efficiency use and ether extract were not influenced by CP levels (P > 0.05). Digestibilities of DM, organic matter, ether extract, NFC and CP as well as metabolizable energy intake linearly increased (P < 0.05), and true digestibility of CP was not affected (P > 0.05) by treatments. Urinary N and retained N linearly increased (P < 0.05) with the increase in dietary N. The MPm were estimated as 4.46 g/BW0.75 and the efficiency of use of MPm was 0.673. In conclusion, obtained MPm requirements of growing Red Norte bulls are greater than the values reported in literature for Zebu cattle and dietary CP levels of 15% and 17% exhibited great responses for growing Red Norte cattle. However, a cost-benefit evaluation should be done before its use.

Type
Research Article
Copyright
© The Animal Consortium 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a

Present address: Department of Animal Production, Animal Science Institute, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, Km 07 – Zona Rural, Seropédica, Rio de Janeiro 23897-005, Brazil

References

Agriculture and Food Research Council 1993. Energy and protein requirements of ruminants. An advisory manual prepared by the AFRC Technical Committee on Responses to Nutrients. CAB International, Wallingford, UK.Google Scholar
Amaral, PM, Valadares Filho, SC, Detmann, E, Santos, SA, Prados, LF, Silva, MLD, Alves, LC, Villadiego, FA, Novaes, MA and Sales Silva, FA 2014. Effect of phase-feeding crude protein on performance and carcass characteristics of crossbred beef bulls: an application to reduce nitrogen compounds in beef cattle diets. Tropical Animal Health and Production 419, 425446. doi: 10.1007/s11250-013-0507-z.Google Scholar
Arthur, PF, Hearnshaw, H and Stephenson, PD 1999. Direct and maternal additive and heterosis effects crossing Bos indicus and Bos Taurus cattle: cow and calf performance in two environments. Livestock Production Science 57, 231241. doi: 10.1016/S0301-6226(98)00172-9.CrossRefGoogle Scholar
Batista, ED, Detmann, E, Titgemeyer, EC, Valadares Filho, SC, Valadares, RFD, Prates, LL, Rennó, LN and Paulino, MF 2016. Effects of varying ruminally undegradable protein supplementation on forage digestion, nitrogen metabolism, and urea kinetics in Nellore cattle fed low-quality tropical forage. Journal of Animal Science 94, 201216. doi: 10.2527/jas2015-9493.CrossRefGoogle ScholarPubMed
Cavalcante, MAB, Pereira, OG, Valadares Filho, SC and Ribeiro, KG 2005. Crude protein levels in diets of beef cattle: intake and apparent total tract, intestinal, and ruminal digestibilities of nutrients. Brazilian Journal of Animal Science 14, 711719. doi: 10.1590/S1516-35982005000700006.Google Scholar
Chizzotti, LM, Valadares Filho, SC, Tedeschi, LO, Chizzotti, FH and Carstens, GE 2007. Energy and protein requirements for growth and maintenance of F1 Nellore × Red Angus bulls, steers, and heifers. Journal of Animal Science 85, 19711981. doi: 10.2527/jas.2006-632.CrossRefGoogle ScholarPubMed
Cole, NA, Greene, LW, McCollum, FT, Montgomery, T and McBride, K 2003. Influence of oscillating dietary crude protein concentration on performance, acid–base balance, and nitrogen excretion of steers. Journal of Animal Science 81, 26602668. doi: 10.2527/2003.81112660x.CrossRefGoogle ScholarPubMed
Detmann, E, Souza, MA, Valadares Filho, SC, Queiroz, AC, Berchielli, TT, Saliba, EOS, Cabral, LS, Pina, DS, Ladeira, MM and Azevedo, JAG 2012. Métodos para análise de alimentos: INCT – Ciência Animal. Editora Suprema, Visconde do Rio Branco, Minas Gerais, Brasil.Google Scholar
Detmann, E and Valadares Filho, SC 2010. On the estimation of non-fibrous carbohydrates in feeds and diets. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 62, 980984.CrossRefGoogle Scholar
Gabarra, PR, Santos, FAP, Bittar, CM, Pires, A and Imaizumi, H 2007. Fontes proteicas e energéticas com diferentes degradabilidades ruminais para novilhos de corte. Acta Scientiarum. Animal Sciences 29. doi: 10.4025/actascianimsci.v29i2.225.CrossRefGoogle Scholar
Galyean, ML, Cole, NA, Tedeschi, LO and Branine, ME 2016. Efficiency of converting digestible energy to metabolizable energy and reevaluation of the California net energy System maintenance requirements and equations for predicting dietary net energy values for beef cattle. Journal of Animal Science 94, 13291341. doi: 10.2527/jas.2015-0223.CrossRefGoogle ScholarPubMed
Huntington, GB 1989. Hepatic urea synthesis and site and rate of urea removal from blood of beef steers fed alfalfa hay or a high concentrate diet. Canadian Journal of Animal Science 69, 215223. doi: 10.4141/cjas89-025.CrossRefGoogle Scholar
Huntington, GB and Archibeque, SL 1999. Practical aspects of urea and ammonia metabolism in ruminants. Journal of Animal Science 77, 111. doi: 10.2527/jas2000.77E-Suppl1y.CrossRefGoogle Scholar
Kennedy, PM and Milligan, LP 1980. The degradation and utilization of endogenous urea in the gastrointestinal tract of ruminants: a review. Canadian Journal Animal Science 60, 205221.CrossRefGoogle Scholar
Lapierre, H and Lobley, GE 2001. Nitrogen recycling in the ruminant: a review. Journal of Dairy Science 84, E223E236.CrossRefGoogle Scholar
Lazzarini, I, Detmann, E, Sampaio, CB, Paulino, MF, Valadares Filho, SC, Souza, MA and Oliveira, FA 2009. Intake and digestibility in cattle fed low-quality tropical forage and supplemented with nitrogenous compounds. Revista Brasileira de Zootecnia 38, 20212030. doi: 10.1590/S1516-35982009001000024.CrossRefGoogle Scholar
Lazzarini, I, Detmann, E, Valadares Filho, SC, Paulino, MF, Batista, ED, Almeida, RM, Reis, WL and Oliveira, FM 2015. Nutritional performance of cattle grazing during rainy season with nitrogen and/or starch supplementation. Asian-Australasian Journal of Animal Science 1, 15401547. doi: 10.5713/ajas.15.0514.Google Scholar
Licitra, G, Hernandez, TM and Van Soest, PJ 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology 57, 347358.CrossRefGoogle Scholar
Lucas, HL and Smart, WWG 1959. Chemical composition and the digestibility of forages. In: Proceeding of the 16th Pasture and Crop Improvement Conference, 9–11 June 1959, Mississippi, USA, pp. 2326.Google Scholar
Machado Neto, OR, Ladeira, MM, Gonçalves, TMG, Lopes, LS, Oliveira, DM and Lima, RR 2011. Performance and carcass traits of Nellore and Red Norte steers finished in feedlot. Revista Brasileira de Zootecnia 40, 10801087. doi: 10.1590/S1516-35982011000500020.CrossRefGoogle Scholar
Menezes, ACB, Valadares Filho, SC, Costa e Silva, LF, Pacheco, MVC, Pereira, JMV, Rotta, PP, Zanetti, D, Detmann, E, Silva, FAS, Godoi, LA and Rennó, LN 2016. Does a reduction in dietary crude protein content affect performance, nutrient requirements, nitrogen losses, and methane emissions in finishing Nellore bulls? Agriculture, Ecosystems & Environment, 223, 239249. doi: 10.1016/j.agee.2016.03.015.CrossRefGoogle Scholar
Mertens, DR 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beaker or crucibles: Collaborative study. Journal of AOAC International 85, 12171240.Google ScholarPubMed
National Academies of Sciences, Engineering, and Medicine (NASEM) 2016. Nutrient requirements of beef cattle, 8th revised edition. National Academy Press, Washington, DC, USA.Google Scholar
National Research Council 1985. Nutrient requirements for sheep, 6th revised edition. National Academy Press, Washington, DC, USA.Google Scholar
National Research Council 1996. Nutrients requirements of beef cattle, 7th revised edition. National Academy Press, Washington, DC, USA.Google Scholar
Obeid, JA, Pereira, OG, Pereira, DH, Valadares Filho, SC, Carvalho, IPC and Martins, JM 2006. Níveis de proteína bruta em dietas de bovinos de corte. Revista Brasileira de Zootecnia 35, 24342442. doi: 10.1590/S1516-35982006000800033.CrossRefGoogle Scholar
Oliveira, MVM, Sanchez, LMB, Vargas Júnior, FM, Pérez, JRO, Pires, CC, Haygert, IP, Frizzo, A and Lana, RP 2002. Avaliação das farinhas de peixe e pena, no confinamento de bezerros leiteiros desmamados, através de dietas calculadas em termos de proteína bruta ou de proteína metabolizável. Revista Brasileira de Zootecnia 31, 15711581.CrossRefGoogle Scholar
Rémond, B, Kerouanton, J and Brocard, V 1997. The effect of reducing or omitting the dry period on the performance of dairy cows. Productions Animales 10, 301315.Google Scholar
Rhoads, ML, Rhoads, RP, Gilbert, RO, Toole, R and Butler, WR 2006. Detrimental effects of high plasma urea nitrogen levels on viability of embryos from lactating dairy cows. Animal Reproduction Science 91, 110.CrossRefGoogle ScholarPubMed
Roseler, DK, Ferguson, JD, Sniffen, CJ and Herrema, J 1993. Dietary protein degradability effects on plasma and milk urea nitrogen and milk nitrogen in Holstein cows. Journal of Dairy Science 76, 522534.CrossRefGoogle Scholar
Rotta, PP, Menezes, ACB and Costa e Silva, LF 2016. Exigências de proteína para bovinos de corte. In Exigências nutricionais de zebuínos puros e cruzados (ed. Valadares Filho, SC, Marcondes, MI and Chizzotti, ML), pp. 191220. Suprema, Visconde do Rio Branco, Minas Gerais, Brazil.Google Scholar
Rufino, LMA, Detmann, E, Gomes, DI, Reis, WLS, Batista, ED, Valadares Filho, SC and Paulino, MF 2016. Intake, digestibility and nitrogen utilization in cattle fed tropical forage and supplemented with protein in the rumen, abomasum, or both. Journal of Animal Science Biotechnology 7, 11. doi: 10.1186/s40104-016-0069-9.CrossRefGoogle ScholarPubMed
Sainz, RD, Barioni, LG, Paulino, PV, Valadares Filho, SC and Oltjen, JW 2005. Growth patterns of Nellore vs British beef cattle breeds assessed using a dynamic, mechanistic model of cattle growth and composition. In Nutrient digestion and utilization in farm animals: modelling approaches, pp. 160170. CABI Publishing, Wallingford, UK.Google Scholar
SAS 2003. SAS user’s guide, Version 9.1 edition. SAS Institute Inc., Cary, NC, USA.Google Scholar
Schettini, MA, Prigge, EC and Nestor, EL 1999. Influence of mass and volume of ruminal contents on voluntary intake and digesta passage of a forage diet in steers. Journal of Animal Science 77, 18961904. doi: 10.2527/1999.7771896x.CrossRefGoogle ScholarPubMed
Schroeder, GF and Titgemeyer, EC 2008. Interaction between protein and energy supply on protein utilization in growing cattle: a review. Livestock Science 114, 110. doi: 10.1016/j.livsci.2007.12.008.CrossRefGoogle Scholar
Schwab, CG and Broderick, GA 2017. A 100-year review: protein and amino acid nutrition in dairy cows. Journal of Animal Science 100, 1009410112. doi: 10.3168/jds.2017-13320.Google ScholarPubMed
Schwab, CG, Ordway, RS and Whitehouse, NL 2004. Amino acid balancing in the context of MP and RUP requirements. In: Proceedings of the Florida Ruminant Nutrition Symposium: 15th Annual meeting, Gainesville, FL, USA, pp. 1025.Google Scholar
Teodoro, AL, Oliveira, MVM, Vargas Junior, FM, Juliano, RS, Longo, ML, Seno, LO and Oliveira, CAL 2013. Níveis de proteína na dieta de novilhas da raça Pantaneira: desempenho e digestibilidade aparente. Archivos de Zootecnia 62, 36978. doi: 10.4321/S0004-05922013000300005.CrossRefGoogle Scholar
Valadares Filho, SC, Costa e Silva, LF, Gionbelli, MP, Rotta, PP, Marcondes, MI, Chizzotti, ML and Prados, LF 2016. Exigências Nutricionais de Zebuínos Puros e Cruzados - BR-CORTE, 3rd edition. Suprema Gráfica e Editora LTDA, Viçosa, Minas Gerais, Brazil.CrossRefGoogle Scholar
Valadares Filho, SC, Marcondes, MI, Chizzotti, ML and Paulino, PVR 2010. Exigências nutricionais de zebuínos puros e cruzados - BR-CORTE, 2nd edition. DZO – UFV, Viçosa, Minas Gerais, Brazil.Google Scholar
Van Soest, PJ 1994. Nutritional ecology of the ruminant, 2nd edition. Cornell University Press, Ithaca, NY, USA.Google Scholar
Van Soest, PJ, Robertson, JB and Lewis, BA 1991. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.CrossRefGoogle Scholar
Véras, RML, Valadares Filho, SC, Valadares, RFD, Rennó, LN, Paulino, PVR and Souza, MA 2007. Balanço de compostos nitrogenados e estimativa das exigências de proteína de mantença de bovinos Nelore de três condições sexuais. Revista Brasileira de Zootecnia 36, 12121217.CrossRefGoogle Scholar
Vieira, IS 2015. Metanálise da excreção fecal e urinária e da eficiência de utilização de compostos nitrogenados em vacas lactantes. PhD thesis, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.Google Scholar
Winchester, CF, Hiner, RL and Scarborough, VC 1957. Some effects on beef cattle of protein and energy restriction. Journal of Animal Science 16, 426436. doi: 10.2527/jas1957.162426x.CrossRefGoogle Scholar