Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Veerkamp, R.F.
Coffey, M.P.
Berry, D.P.
de Haas, Y.
Strandberg, E.
Bovenhuis, H.
Calus, M.P.L.
and
Wall, E.
2012.
Genome-wide associations for feed utilisation complex in primiparous Holstein–Friesian dairy cows from experimental research herds in four European countries.
Animal,
Vol. 6,
Issue. 11,
p.
1738.
de Haas, Y.
Calus, M.P.L.
Veerkamp, R.F.
Wall, E.
Coffey, M.P.
Daetwyler, H.D.
Hayes, B.J.
and
Pryce, J.E.
2012.
Improved accuracy of genomic prediction for dry matter intake of dairy cattle from combined European and Australian data sets.
Journal of Dairy Science,
Vol. 95,
Issue. 10,
p.
6103.
van Binsbergen, R.
Veerkamp, R.F.
and
Calus, M.P.L.
2012.
Makeup of the genetic correlation between milk production traits using genome-wide single nucleotide polymorphism information.
Journal of Dairy Science,
Vol. 95,
Issue. 4,
p.
2132.
Pszczola, M.
Veerkamp, R.F.
de Haas, Y.
Wall, E.
Strabel, T.
and
Calus, M.P.L.
2013.
Effect of predictor traits on accuracy of genomic breeding values for feed intake based on a limited cow reference population.
Animal,
Vol. 7,
Issue. 11,
p.
1759.
Calus, M.P.L.
Berry, D.P.
Banos, G.
de Haas, Y.
and
Veerkamp, R.F.
2013.
Genomic selection: the option for new robustness traits?.
Advances in Animal Biosciences,
Vol. 4,
Issue. 3,
p.
618.
Coffey, M.P.
McParland, S.
Bastin, C.
Wall, E.
Berry, D.
and
Veerkamp, R.F.
2013.
Implementation in breeding programmes.
Advances in Animal Biosciences,
Vol. 4,
Issue. 3,
p.
626.
Calus, M.P.L.
de Haas, Y.
and
Veerkamp, R.F.
2013.
Combining cow and bull reference populations to increase accuracy of genomic prediction and genome-wide association studies.
Journal of Dairy Science,
Vol. 96,
Issue. 10,
p.
6703.
Berry, D.P.
Coffey, M.P.
Pryce, J.E.
de Haas, Y.
Løvendahl, P.
Krattenmacher, N.
Crowley, J.J.
Wang, Z.
Spurlock, D.
Weigel, K.
Macdonald, K.
and
Veerkamp, R.F.
2014.
International genetic evaluations for feed intake in dairy cattle through the collation of data from multiple sources.
Journal of Dairy Science,
Vol. 97,
Issue. 6,
p.
3894.
Pollott, G.E.
Charlesworth, A.
and
Wathes, D.C.
2014.
Possibilities to improve the genetic evaluation of a rare breed using limited genomic information and multivariate BLUP.
Animal,
Vol. 8,
Issue. 5,
p.
685.
Pryce, J.E.
Johnston, J.
Hayes, B.J.
Sahana, G.
Weigel, K.A.
McParland, S.
Spurlock, D.
Krattenmacher, N.
Spelman, R.J.
Wall, E.
and
Calus, M.P.L.
2014.
Imputation of genotypes from low density (50,000 markers) to high density (700,000 markers) of cows from research herds in Europe, North America, and Australasia using 2 reference populations.
Journal of Dairy Science,
Vol. 97,
Issue. 3,
p.
1799.
Manzanilla Pech, C.I.V.
Veerkamp, R.F.
Calus, M.P.L.
Zom, R.
van Knegsel, A.
Pryce, J.E.
and
De Haas, Y.
2014.
Genetic parameters across lactation for feed intake, fat- and protein-corrected milk, and liveweight in first-parity Holstein cattle.
Journal of Dairy Science,
Vol. 97,
Issue. 9,
p.
5851.
Pryce, J.E.
Gonzalez-Recio, O.
Thornhill, J.B.
Marett, L.C.
Wales, W.J.
Coffey, M.P.
de Haas, Y.
Veerkamp, R.F.
and
Hayes, B.J.
2014.
Short communication: Validation of genomic breeding value predictions for feed intake and feed efficiency traits.
Journal of Dairy Science,
Vol. 97,
Issue. 1,
p.
537.
Tetens, J.
Thaller, G.
and
Krattenmacher, N.
2014.
Genetic and genomic dissection of dry matter intake at different lactation stages in primiparous Holstein cows.
Journal of Dairy Science,
Vol. 97,
Issue. 1,
p.
520.
Hardie, L.C.
Armentano, L.E.
Shaver, R.D.
VandeHaar, M.J.
Spurlock, D.M.
Yao, C.
Bertics, S.J.
Contreras-Govea, F.E.
and
Weigel, K.A.
2015.
Considerations when combining data from multiple nutrition experiments to estimate genetic parameters for feed efficiency.
Journal of Dairy Science,
Vol. 98,
Issue. 4,
p.
2727.
Connor, E.E.
2015.
Invited review: Improving feed efficiency in dairy production: challenges and possibilities.
Animal,
Vol. 9,
Issue. 3,
p.
395.
de Haas, Y.
Pryce, J.E.
Calus, M.P.L.
Wall, E.
Berry, D.P.
Løvendahl, P.
Krattenmacher, N.
Miglior, F.
Weigel, K.
Spurlock, D.
Macdonald, K.A.
Hulsegge, B.
and
Veerkamp, R.F.
2015.
Genomic prediction of dry matter intake in dairy cattle from an international data set consisting of research herds in Europe, North America, and Australasia.
Journal of Dairy Science,
Vol. 98,
Issue. 9,
p.
6522.
Tempelman, R.J.
Spurlock, D.M.
Coffey, M.
Veerkamp, R.F.
Armentano, L.E.
Weigel, K.A.
de Haas, Y.
Staples, C.R.
Connor, E.E.
Lu, Y.
and
VandeHaar, M.J.
2015.
Heterogeneity in genetic and nongenetic variation and energy sink relationships for residual feed intake across research stations and countries.
Journal of Dairy Science,
Vol. 98,
Issue. 3,
p.
2013.
de Haas, Y.
Pszczola, M.
Soyeurt, H.
Wall, E.
and
Lassen, J.
2017.
Invited review: Phenotypes to genetically reduce greenhouse gas emissions in dairying.
Journal of Dairy Science,
Vol. 100,
Issue. 2,
p.
855.
Uddin, M. E.
Meuwissen, T.
and
Veerkamp, R. F.
2018.
Adjusting for heterogeneity of experimental data in genetic evaluation of dry matter intake in dairy cattle.
Journal of Animal Breeding and Genetics,
Vol. 135,
Issue. 1,
p.
28.
Li, B.
Fikse, W.F.
Løvendahl, P.
Lassen, J.
Lidauer, M.H.
Mäntysaari, P.
and
Berglund, B.
2018.
Genetic heterogeneity of feed intake, energy-corrected milk, and body weight across lactation in primiparous Holstein, Nordic Red, and Jersey cows.
Journal of Dairy Science,
Vol. 101,
Issue. 11,
p.
10011.