Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T22:43:19.912Z Has data issue: false hasContentIssue false

Influence of an increase in diet structure on milk conjugated linoleic acid content of cows fed extruded linseed

Published online by Cambridge University Press:  01 October 2008

Q. C. Dang Van
Affiliation:
Unité de Biochimie de la Nutrition, Faculté d’Ingénierie Biologique, Agronomique et Environnementale, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
M. Focant
Affiliation:
Unité de Biochimie de la Nutrition, Faculté d’Ingénierie Biologique, Agronomique et Environnementale, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
D. Deswysen
Affiliation:
Unité de Biochimie de la Nutrition, Faculté d’Ingénierie Biologique, Agronomique et Environnementale, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
E. Mignolet
Affiliation:
Unité de Biochimie de la Nutrition, Faculté d’Ingénierie Biologique, Agronomique et Environnementale, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
C. Turu
Affiliation:
Unité de Biochimie de la Nutrition, Faculté d’Ingénierie Biologique, Agronomique et Environnementale, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
J. Pottier
Affiliation:
Unité de Biochimie de la Nutrition, Faculté d’Ingénierie Biologique, Agronomique et Environnementale, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
E. Froidmont
Affiliation:
Département de Productions et Nutrition Animales, Centre Wallon de Recherches Agronomiques, B-5030 Gembloux, Belgium
Y. Larondelle*
Affiliation:
Unité de Biochimie de la Nutrition, Faculté d’Ingénierie Biologique, Agronomique et Environnementale, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
Get access

Abstract

This experiment studied the effect of a modest difference in diet structure value (SV) on milk conjugated linoleic acid (CLA) contents of cows fed diets supplemented with extruded linseed, in situations where the diets provided enough SV and therefore did not induce milk fat depression. Six lactating Holstein cows were used in a crossover design with two treatments (‘SV 1.50’ and ‘SV 1.73’) and two periods of 21 days. The ‘SV 1.50’ diet contained 59% maize silage, 13% soya bean meal, 13% sugar beet pulp and 14% Nutex Compact (containing 56% extruded linseed) (dry matter (DM) basis) and was offered as a restricted total mixed ration. For the ‘SV 1.73’ diet, 8% wheat straw (DM basis) was added to the ‘SV 1.50’ diet as an additional structure source. The two diets had a forage-to-concentrate ratio of 59 : 41 and 62 : 38. The inclusion of straw in the diet resulted in an additional intake of NDF (+1110 g/day), which accounted for 90% of the additional intake of OM, whereas additional intakes of the other nutrients were minor. Milk yield and composition did not differ among treatments. The inclusion of straw in the diet did not affect the milk levels of t10–18:1, 18:2n-6, c9-16:1, c9-18:1, c11-18:1, 6:0, 8:0, 20:4 and 20:5. It decreased the milk levels of c9,t11-CLA (2.13% v. 3.03% of fatty acids (FA) reported, P < 0.001), t11-18:1 (4.99% v. 7.10% of FA reported, P < 0.001), 18:3n-3, t9-16:1 and t9-18:1, while it increased the milk levels of 6:0–14:0 (20.90% v. 19.69% of FA reported, P < 0.01), 16:0 (26.55% v. 25.25% of FA reported, P < 0.01), 18:0 (13.54% v. 12.59% of FA reported, P < 0.001), 17:0, 20:0 and 22:5. Regarding the ratio between FA, the inclusion of straw increased the 18:0/total C18 FA ratio (37.74% v. 32.07%, P < 0.001), whereas it decreased the total trans-C18 FA/total C18 FA ratio (15.46% v. 20.34%, P < 0.001), the t11-18:1/total C18 FA ratio (13.70% v. 17.95%, P < 0.01) and the c9,t11-CLA/total C18 FA ratio (5.82% v. 7.64%, P < 0.001). We conclude from this experiment that even a modest increase in SV to a diet supplemented with extruded linseed, yet already providing enough SV, alters the rumen lipid metabolism and, hence, CLA levels in milk fat.

Type
Full Paper
Copyright
Copyright © The Animal Consortium 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Association of Official Analytical Chemists 1995. Official methods of analysis, vol. 2, 16th edition. AOAC International, Arlington, VA, USA.Google Scholar
Bauman, DE, Griinari, JM 2003. Nutritional regulation of milk fat synthesis. Annual Review of Nutrition 23, 203227.CrossRefGoogle ScholarPubMed
Bauman, DE, Corl, BA, Peterson, DG 2003. The biology of conjugated linoleic acids in ruminants. In Advances in conjugated linoleic acid research (ed. JL Sébédio, WW Christie and R Adlof), vol. 2, pp. 146173. AOCS Press, Champaign, IL, USA.Google Scholar
Bell, JA, Griinari, JM, Kennelly, JJ 2006. Effect of safflower oil, flaxseed oil, monensin and vitamin E on concentration of conjugated linoleic acid in bovine milk fat. Journal of Dairy Science 89, 733748.CrossRefGoogle ScholarPubMed
Bu, DP, Wang, JQ, Dhiman, TR, Liu, SJ 2007. Effectiveness of oils rich in linoleic and linolenic acids to enhance conjugated linoleic acid in milk from dairy cows. Journal of Dairy Science 90, 9981007.CrossRefGoogle Scholar
Chilliard, Y, Ferlay, A 2004. Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties. Reproduction, Nutrition, Development 44, 467492.CrossRefGoogle ScholarPubMed
Choi, NJ, Imm, JY, Oh, S, Kim, BC, Hwang, HJ, Kim, YJ 2005. Effect of pH and oxygen on conjugated linoleic acid (CLA) production by mixed rumen bacteria from cows fed high concentrate and high forage diets. Animal Feed Science and Technology 123–124, 643653.CrossRefGoogle Scholar
Christie, WW 1982. Lipid analysis, 2nd edition. Pergamon Press, Oxford, UK.Google Scholar
Collomb, M, Sieber, R, Butikofer, U 2004. CLA isomers in milk fat from cows fed diets with high levels of unsaturated fatty acids. Lipids 39, 355364.CrossRefGoogle ScholarPubMed
Commission des Communautés européennes 1985. Recueil des actes agricoles, Harmonisation des législations, Aliments des animaux, tome VI/4. Office des publications officielles des Communautés européennes. Grand-Duché de Luxembourg, Luxembourg.Google Scholar
Corl, BA, Baumgard, LH, Griinari, JM, Delmonte, P, Morehouse, KM, Yurawecz, MP, Bauman, DE 2002. Trans-7, cis-9 CLA is synthesized endogenously by delta 9-desaturase in dairy cows. Lipids 37, 681688.CrossRefGoogle ScholarPubMed
Cruz-Hernandez, C, Kramer, JKG, Kraft, J, Santercole, V, Or-Rashid, M, Deng, Z, Dugan, MER, Delmonte, P, Yurawecz, MP 2006. Systematic analysis of trans and conjugated linoleic acids in the milk and meat of ruminants. In Advances in conjugated linoleic acid research (ed. MP Yurawecz, JKG Kramer, O Gudmundsen, MW Pariza and S Banni), vol. 3, pp. 4593. AOCS Press, Champaign, IL, USA.CrossRefGoogle Scholar
De Brabander, DL, De Boever, JL, Vanacker, JM, Boucqué, CV, Botterman, SM 1999. Evaluation of physical structure in dairy cattle nutrition. In Recent developments in ruminant nutrition 4 (ed. PC Garnsworthy and DJA Cole), pp. 4780. Nottingham University Press, Nottingham, UK.Google Scholar
De Brabander, DL 2006. Système d’évaluation de la structure physique pour l’alimentation des vaches laitières. Publication BicarZ, Paris, France.Google Scholar
Dewhurst, RJ, Shingfield, KJ, Lee, MRF, Scollan, ND 2006. Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Animal Feed Science and Technology 131, 168206.CrossRefGoogle Scholar
Dhiman, TR, Satter, LD, Pariza, MW, Galli, MP, Albright, K, Tolosa, MX 2000. Conjugated linoleic acid (CLA) content of milk from cows offered diets rich in linoleic and linolenic acid. Journal of Dairy Science 83, 10161027.CrossRefGoogle Scholar
Flachowsky, G, Erdmann, K, Hüther, L, Jahreis, G, Möckel, P, Lebzien, P 2006. Influence of roughage/concentrate ratio and linseed oil on the concentration of trans-fatty acids and conjugated linoleic acid in duodenal chyme and milk fat of late lactating cows. Archives of Animal Nutrition 60, 501511.CrossRefGoogle ScholarPubMed
Focant, M, Mignolet, E, Marique, M, Clabots, F, Breyne, T, Dalemans, D, Larondelle, Y 1998. The effect of vitamin E supplementation of cow diets containing rapeseed and linseed on the prevention of milk fat oxidation. Journal of Dairy Science 81, 10951101.CrossRefGoogle ScholarPubMed
Gerber, N 1938. Die praktische milch-prüfung, Einschliessend die kontrolle von molkereiprodukten. Wyss, Bern, Switzerland.Google Scholar
Gerson, T, John, A, King, ASD 1985. The effects of dietary starch and fibre on the in vitro rates of lipolysis and hydrogenation by sheep rumen digesta. Journal of Agricultural Science 105, 2730.CrossRefGoogle Scholar
Gerson, T, King, ASD, Kelly, KE, Kelly, WJ 1988. Influence of particle size and surface area on in vitro rates of gas production, lipolysis of triacylglycerol and hydrogenation of linoleic acid by sheep rumen digesta or Ruminococcus flavefaciens. Journal of Agricultural Science 110, 3137.CrossRefGoogle Scholar
Glasser, F, Doreau, M, Ferlay, A, Loor, JJ, Chilliard, Y 2007. Milk fatty acids: mammary synthesis could limit transfer from duodenum in cows. European Journal of Lipid Science and Technology 109, 817827.CrossRefGoogle Scholar
Goering, HK, Van Soest, PJ 1970. Forage fiber analyses: apparatus, reagents, procedure and some applications. Agriculture handbook no. 379. USDA, Washington, DC, USA.Google Scholar
Griinari, JM, Bauman, DE 1999. Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants. In Advances in conjugated linoleic acid research (ed. MP Yurawecz, MM Mossoba, JKG Kramer, MW Pariza and GJ Nelson), vol. 1, pp. 180200. AOCS Press, Champaign, IL, USA.Google Scholar
Harfoot, CG, Hazlewood, GP 1997. Lipid metabolism in the rumen. In The rumen microbial ecosystem (ed. PN Hobson and CS Stewart), pp. 382426. Springer, New York, NY, USA.CrossRefGoogle Scholar
Institut National de la Recherche Agronomique 1988. Alimentation des bovins, ovins et caprins. INRA, Paris, France.Google Scholar
Institut National de la Recherche Agronomique 2007. Alimentation des bovins, ovins et caprins. Besoins des animaux – Valeurs des aliments. INRA, Paris, France.Google Scholar
Jensen, RG 2002. Invited review. The composition of bovine milk lipids: January 1995 to December 2000. Journal of Dairy Science 85, 295350.CrossRefGoogle Scholar
Kelly, ML, Berry, JR, Dwyer, DA, Griinari, JM, Chouinard, PY, Van Amburgh, ME, Bauman, DE 1998. Dietary fatty acid sources affect conjugated linoleic acid concentrations in milk from lactating dairy cows. Journal of Nutrition 128, 881885.CrossRefGoogle ScholarPubMed
Kolver, ES, de Veth, MJ 2002. Prediction of ruminal pH from pasture-based diets. Journal of Dairy Science 85, 12551266.CrossRefGoogle ScholarPubMed
Kraft, J, Collomb, M, Mockel, P, Sieber, R, Jahreis, G 2003. Differences in CLA isomer distribution of cow’s milk lipids. Lipids 38, 657664.CrossRefGoogle ScholarPubMed
Kramer, JKG, Sehat, N, Fritsche, J, Mossoba, MM, Eulitz, K, Yurawecz, MP, Ku, Y 1999. Separation of conjugated fatty acid isomers. In Advances in conjugated linoleic acid research (ed. MP Yurawecz, MM Mossoba, JKG Kramer, MW Pariza and GJ Nelson), vol. 1, pp. 83109. AOCS Press, Champaign, IL, USA.Google Scholar
Le Ruyet, P, Tucker, WB, Hogue, JF, Aslam, M, Lema, M, Shin, IS, Miller, TP, Adams, GD 1992. Influence of dietary fiber and buffer value index on the ruminal milieu of lactating dairy cows. Journal of Dairy Science 75, 23942408.CrossRefGoogle ScholarPubMed
Loor, JJ, Ferlay, A, Ollier, A, Doreau, M, Chilliard, Y 2005. Relationship among trans and conjugated fatty acids and bovine milk fat yield due to dietary concentrate and linseed oil. Journal of Dairy Science 88, 726740.CrossRefGoogle ScholarPubMed
Mertens, DR 1997. Creating a system for meeting the fiber requirements of dairy cows. Journal of Dairy Science 80, 14631481.CrossRefGoogle ScholarPubMed
Miron, J, Ben-Ghedalia, D, Morrison, M 2001. Invited review: adhesion mechanisms of rumen cellulolytic bacteria. Journal of Dairy Science 84, 12941309.CrossRefGoogle ScholarPubMed
Mouriño, F, Akkarawongsa, R, Weimer, PJ 2001. Initial pH as a determinant of cellulose digestion rate by mixed ruminal microorganisms in vitro. Journal of Dairy Science 84, 848859.CrossRefGoogle ScholarPubMed
Piperova, LS, Sampugna, J, Teter, BB, Kalscheur, KF, Yurawecz, MP, Ku, Y, Morehouse, KM, Erdman, RA 2002. Duodenal and milk trans octadecenoic acid and conjugated linoleic acid (CLA) isomers indicate that postabsorptive synthesis is the predominant source of cis-9-containing CLA in lactating dairy cows. Journal of Nutrition 132, 12351241.CrossRefGoogle ScholarPubMed
Pottier, J, Focant, M, Debier, C, De Buysser, G, Goffe, C, Mignolet, E, Froidmont, E, Larondelle, Y 2006. Effect of dietary vitamin E on rumen biohydrogenation pathways and milk fat depression in dairy cows fed high-fat diets. Journal of Dairy Science 89, 685692.CrossRefGoogle ScholarPubMed
Roy, A, Ferlay, A, Shingfield, KJ, Chilliard, Y 2006. Examination of the persistency of milk fatty acid composition responses to plant oils in cows given different basal diets, with particular emphasis on trans-C18:1 fatty acids and isomers of conjugated linoleic acid. Animal Science 82, 479492.CrossRefGoogle Scholar
Sauvant, D, Bas, P 2001. La digestion des lipides chez le ruminant. Productions Animales 14, 303310.CrossRefGoogle Scholar
Sauvant, D, Meschy, F, Mertens, D 1999. Les composantes de l’acidose ruminale et les effets acidogènes des rations. Productions Animales 12, 4960.CrossRefGoogle Scholar
Sehat, N, Kramer, JKG, Mossoba, MM, Yurawecz, MP, Roach, JAG, Eulitz, K, Morehouse, KM, Ku, Y 1998. Identification of conjugated linoleic acid isomers in cheese by gas chromatography, silver ion high performance liquid chromatography and mass spectral reconstructed ion profiles. Comparison of chromatographic elution sequences. Lipids 33, 963971.CrossRefGoogle ScholarPubMed
Shingfield, KJ, Reynolds, CK, Lupoli, B, Toivonen, V, Yurawecz, MP, Delmonte, P, Griinari, JM, Grandison, AS, Beever, DE 2005. Effect of forage type and proportion of concentrate in the diet on milk fatty acid composition in cows given sunflower oil and fish oil. Animal Science 80, 225238.CrossRefGoogle Scholar
Soita, HW, Fehr, M, Christensen, DA, Mutsvangwa, T 2005. Effects of corn particle length and forage : concentrate ratio on milk fatty acid composition in dairy cows fed supplemental flaxseed. Journal of Dairy Science 88, 28132819.CrossRefGoogle ScholarPubMed
Vlaeminck, B, Fievez, V, Cabrita, ARJ, Fonseca, AJM, Dewhurst, RJ 2006. Factors affecting odd- and branched-chain fatty acids in milk: a review. Animal Feed Science and Technology 131, 389417.CrossRefGoogle Scholar
Zebeli, Q, Tafaj, M, Steingass, H, Metzler, B, Drochner, W 2006. Effects of physically effective fiber on digestive processes and milk fat content in early lactating dairy cows fed total mixed rations. Journal of Dairy Science 89, 651668.CrossRefGoogle ScholarPubMed