Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-03T14:56:23.057Z Has data issue: false hasContentIssue false

Identification of novel genes for bitter taste receptors in sheep (Ovis aries)

Published online by Cambridge University Press:  21 November 2012

A. M. Ferreira*
Affiliation:
Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, 7000 Évora, Portugal Plant Cell Biotechnology Laboratory, Instituto de Tecnologia Química e Biológica/Universidade Nova de Lisboa (ITQB/UNL), 2780 Oeiras, Portugal
S. S. Araújo
Affiliation:
Plant Cell Biotechnology Laboratory, Instituto de Tecnologia Química e Biológica/Universidade Nova de Lisboa (ITQB/UNL), 2780 Oeiras, Portugal Instituto de Investigação Científica Tropical (IICT) and CIISA – Centro Interdisciplinar de Investigação em Sanidade Animal, CVZ – Centro de Veterinária e Zootecnia, Faculdade de Medicina Veterinária, 1300 Lisboa, Portugal
E. Sales-Baptista
Affiliation:
Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, 7000 Évora, Portugal Departamento de Zootecnia, Universidade de Évora, 7002 Évora, Portugal
A. M. Almeida
Affiliation:
Plant Cell Biotechnology Laboratory, Instituto de Tecnologia Química e Biológica/Universidade Nova de Lisboa (ITQB/UNL), 2780 Oeiras, Portugal Mass Spectrometry Laboratory, Instituto de Tecnologia Química e Biológica/Universidade Nova de Lisboa (ITQB/UNL), 2780 Oeiras, Portugal
Get access

Abstract

Genetic studies on taste sensitivity, and bitter taste receptors (T2R) in particular, are an essential tool to understand ingestive behavior and its relation to variations of nutritional status occurring in ruminants. In the present study, we conducted a data-mining search to identify T2R candidates in sheep by comparison with the described T2R in cattle and using recently available ovine genome. In sheep, we identified eight orthologs of cattle genes: T2R16, T2R10B, T2R12, T2R3, T2R4, T2R67, T2R13 and T2R5. The in silico predicted genes were then confirmed by PCR and DNA sequencing. The sequencing results showed a 99% to 100% similarity with the in silico predicted sequence. Moreover, we address the chromosomal distribution and compare, in homology and phylogenetic terms, the obtained genes with the known T2R in human, mouse, dog, cattle, horse and pig. The eight novel genes identified map either to ovine chromosome 3 or 4. The phylogenetic data suggest a clustering by receptor type rather than by species for some of the receptors. From the species analyzed, we observed a clear proximity between the two ruminant species, sheep and cattle, in contrast with lower similarities obtained for the comparison of sheep with other mammals. Although further studies are needed to identify the complete T2R repertoire in domestic sheep, our data represent a first step for genetic studies on this field.

Type
Breeding and genetics
Copyright
Copyright © The Animal Consortium 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anisimova, M, Gascuel, O 2006. Approximate likelihood ratio test for branches: a fast, accurate and powerful alternative. Systematic Biology 55, 539552.Google Scholar
Bachmanov, AA, Beauchamp, GK 2007. Taste receptor genes. Annual Review of Nutrition 27, 389414.CrossRefGoogle ScholarPubMed
Behrens, M, Meyerhof, W 2009. Mammalian bitter taste perception. Results and Problems in Cell Differentiation 47, 203220.Google Scholar
Behrens, M, Meyerhof, W 2011. Gustatory and extragustatory functions of mammalian taste receptors. Physiology and Behavior 105, 413.Google Scholar
Brucher, C 1884. Abhandlung über die Verteilung und Anordnung der Geschmackspapillen auf der Zunge der Hufthiere. Dtsche. Ztscht. f. Thiermed. u. vergl. Path. 10, 93111.Google Scholar
Castresana, J 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540552.Google Scholar
Chandrashekar, J, Hoon, MA, Ryba, NJ, Zuker, CS 2006. The receptors and cells for mammalian taste. Nature 444, 288294.Google Scholar
Chevenet, F, Brun, C, Banuls, AL, Jacq, B, Chisten, R 2006. TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 7, 439.CrossRefGoogle ScholarPubMed
Conte, C, Ebeling, M, Marcuz, A, Nef, P, Andres-Barquin, PJ 2002. Identification and characterization of human taste receptor genes belonging to the TAS2R family. Cytogenetic and Genome Research 98, 4553.Google Scholar
Conte, C, Ebeling, M, Marcuz, A, Nef, P, Andres-Barquin, PJ 2003. Evolutionary relationships of the Tas2r receptor gene families in mouse and human. Physiological Genomics 14, 7382.Google Scholar
Dereeper, A, Audic, S, Claverie, JM, Blanc, G 2010. BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evolutionary Biology 10, 8.CrossRefGoogle ScholarPubMed
Dereeper, A, Guignon, V, Blanc, G, Audic, S, Buffet, S, Chevenet, F, Dufayard, JF, Guindon, S, Lefort, V, Lescot, M, Claverie, JM, Gascuel, O 2008. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research 6(Web Server issue), W465W469.Google Scholar
Dong, D, Jones, G, Zhang, S 2009. Dynamic evolution of bitter taste receptor genes in vertebrates. BMC Evolutionary Biology 9, 12.Google Scholar
Edgar, RC 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 17921797.Google Scholar
Garcia-Bailo, B, Toguri, C, Eny, KM, El-Sohemy, A 2009. Genetic variation in taste and its influence on food selection. OMICS 13, 6980.Google Scholar
Gilad, Y, Bustamante, CD, Lancet, D, Pääbo, S 2003. Natural selection on the olfactory receptor gene family in humans and chimpanzees. American Journal of Human Genetics 73, 489501.Google Scholar
Go, Y 2006. SMBE Tri-National Young Investigators. Proceedings of the SMBE Tri-National Young Investigators’ Workshop 2005. Lineage-specific expansions and contractions of the bitter taste receptor gene repertoire in vertebrates. Molecular Biology and Evolution 23, 964972.Google Scholar
Guindon, S, Gascuel, O 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696704.Google Scholar
International Sheep Genomics Consortium, Archibald, AL, Cockett, NE, Dalrymple, BP, Faraut, T, Kijas, JW, Maddox, JF, McEwan, JC, Hutton Oddy, V, Raadsma, HW, Wade, C, Wang, J, Wang, W, Xun, X 2010. The sheep genome reference sequence: a work in progress. Animal Genetics 41, 449453.Google Scholar
Jiang, P, Josue, J, Li, X, Glaser, D, Li, W, Brand, JG, Margolskee, RF, Reed, DR, Beauchamp, GK 2012. Major taste loss in carnivorous mammals. Proceedings of the National Academy of Sciences 109, 49564961.Google Scholar
Kijas, JW, Lenstra, JA, Hayes, B, Boitard, S, Porto Neto, LR, San Cristobal, M, Servin, B, McCulloch, R, Whan, V, Gietzen, K, Paiva, S, Barendse, W, Ciani, E, Raadsma, H, McEwan, JC, Dalrymple, Bother members of the International Sheep Genomics Consortium 2012. Genome-wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biology 10, e1001258. (doi:10.1371/journal.pbio.1001258).CrossRefGoogle ScholarPubMed
Kim, U, Wooding, S, Ricci, D, Jorde, LB, Drayna, D 2005. Worldwide haplotype diversity and coding sequence variation at human bitter taste receptor loci. Human Mutation 26, 199204.Google Scholar
Kobayashi, K, Jackowiak, H, Frackowiak, H, Yoshimura, K, Kumakura, M 2005. Comparative morphological study on the tongue and lingual papillae of horses (Perissodactyla) and selected ruminantia (Artiodactyla). Italian Journal of Anatomy and Embryology 110, 5563.Google Scholar
Krogh, A, Larsson, B, von Heijne, G, Sonnhammer, ELL 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology 305, 567580.Google Scholar
Lamy, E, Capela e Silva, F, Ferreira, A, Sales Baptista, E 2012. The Influence of oral environment on diet choices in goats: a focus on saliva protein composition. In Goats: habitat, breeding and management (ed. DE Garrote and GJ Arede), pp. 93–111. Nova Science Publishers Inc., New York. ISBN: 978-1-61942-932-1.Google Scholar
Lamy, E, da Costa, G, Santos, R, Capela e Silva, F, Potes, J, Pereira, A, Coelho, AV, Sales Baptista, E 2009. Sheep and goat saliva proteome analysis: a useful tool for ingestive behavior research? Physiology and Behavior 98, 393401.Google Scholar
Notredame, C, Higgins, DG, Heringa, JJ 2000. T-Coffee: a novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology 302, 205217.CrossRefGoogle ScholarPubMed
Nozawa, M, Kawahara, Y, Nei, M 2007. Genomic drift and copy number variation of sensory receptor genes in humans. Proceedings of the National Academy of Sciences of the United States of America 104, 2042120426.CrossRefGoogle ScholarPubMed
Shi, P, Zhang, J 2006. Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. Molecular Biology and Evolution 23, 292300.Google Scholar
Sonnhammer, ELL, von Heijne, G, Krogh, A 1998. A hidden Markov model for predicting transmembrane helices in protein sequences. Proceedings International Conference on Intelligent Systems for Molecular Biology 6, 175182.Google Scholar
Strachan, T, Read, AP 2004. Human molecular genetics. Garland Science, New York.Google Scholar
Sugawara, T, Go, Y, Udon, T, Morimura, N, Tomonaga, M, Hirai, H, Imai, H 2011. Diversification of Bitter Taste Receptor Gene Family in Western Chimpanzees. Molecular Biology and Evolution 28, 921931.Google Scholar
Ueda, T, Ugawa, S, Ishida, Y, Shibata, Y, Murakami, S, Shimada, S 2001. Identification of coding single-nucleotide polymorphisms in human taste receptor genes involving bitter tasting. Biochemical and Biophysical Research Communications 285, 147151.Google Scholar
Van Poucke, M, Vanhaesebrouck, AE, Peelman, LJ, Van Ham, L 2012. Experimental validation of in silico predicted KCNA1, KCNA2, KCNA6 and KCNQ2 genes for association studies of peripheral nerve hyperexcitability syndrome in Jack Russell Terriers. Neuromuscular Disorders 22, 558565.CrossRefGoogle ScholarPubMed
Wang, X, Thomas, SD, Zhang, J 2004. Relaxation of selective constraint and loss of function in the evolution of human bitter taste receptor genes. Human Molecular Genetics 13, 26712678.Google Scholar
Zhang, Z, Schwartz, S, Wagner, L, and Miller, W 2000. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology 7, 203214.Google Scholar
Zhu, M, Zhao, S 2007. Candidate gene identification approach: progress and challenges. International Journal of Biological Sciences 3, 420427.Google Scholar
Supplementary material: File

Ferreira Supplementary Material

Appendix

Download Ferreira Supplementary Material(File)
File 556.2 KB