Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T14:03:44.140Z Has data issue: false hasContentIssue false

Effects of increasing amounts of extruded linseed in the diet on apparent ruminal synthesis of some B vitamins in dairy cows

Published online by Cambridge University Press:  07 April 2020

V. Beaudet
Affiliation:
Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 2000 College, Sherbrooke, QuébecJ1M 0C8, Canada Département des sciences animales, Université Laval, Québec, QuébecG1V 0A6, Canada
R. Gervais
Affiliation:
Département des sciences animales, Université Laval, Québec, QuébecG1V 0A6, Canada
P. Y. Chouinard
Affiliation:
Département des sciences animales, Université Laval, Québec, QuébecG1V 0A6, Canada
B. Graulet
Affiliation:
Université Clermont Auvergne, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), VetAgro Sup, Unité mixte de recherche sur les herbivores (UMR), Saint-Genès-ChampanelleF-63122, France
C. Martin
Affiliation:
Université Clermont Auvergne, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), VetAgro Sup, Unité mixte de recherche sur les herbivores (UMR), Saint-Genès-ChampanelleF-63122, France
M. Doreau
Affiliation:
Université Clermont Auvergne, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), VetAgro Sup, Unité mixte de recherche sur les herbivores (UMR), Saint-Genès-ChampanelleF-63122, France
C. L. Girard*
Affiliation:
Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 2000 College, Sherbrooke, QuébecJ1M 0C8, Canada
*
Get access

Abstract

Many studies have shown that metabolic efficiency of ruminants can be significantly decreased when B-vitamin supply is insufficient. Under the present state of knowledge, the amounts of B vitamins available for intestinal absorption cannot be predicted based on diet composition. Therefore, in an attempt to increase our understanding of the effects of dietary factors, on B-vitamin supply for dairy cows, the effects of increasing amounts of extruded linseed in diets based on hay (permanent grassland hay, H; Experiment 1) or corn silage (CS; Experiment 2) on apparent ruminal synthesis (ARS) of thiamin, riboflavin, niacin, vitamin B6, folates and vitamin B12 were evaluated. In each experiment, four lactating Holstein cows fitted with cannulas in the rumen and the proximal duodenum were used in a 4 × 4 Latin square design. In both experiments, the dietary treatments consisted of an increasing supply of extruded linseed representing 0%, 5%, 10% or 15% of diet DM. The forage : concentrate ratios were 50 : 50 and 60 : 40 for Experiments 1 and 2, respectively. Duodenal flow was determined using YbCl3 as a marker. The ARS of each B vitamin was calculated as duodenal flow – daily intake. In both experiments, treatments did not affect thiamin, riboflavin, niacin and vitamin B12 duodenal flow or ARS. Increasing the dietary concentration of extruded linseed decreased folate intake in Experiment 1 and vitamin B6 intake in Experiment 2 but resulted in a greater duodenal flow of vitamin B6 and folates regardless of the forage used in basal diet. Greater dietary linseed concentrations decreased vitamin B6 apparent degradation in the rumen in CS-based diet only and increased folate ARS in both H- and CS-based diets. Increasing linseed concentration of isonitrogenous and isoenergetic diets increased vitamin B6 and folate supply to dairy cows, both with H- and CS-based diets.

Type
Research Article
Copyright
© The Animal Consortium and Her Majesty the Queen in Right of Canada, represented by the Minister of Agriculture and Agri-Food Canada and the Minister of Health Canada 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beaudet, V, Gervais, R, Graulet, B, Nozière, P, Doreau, M, Fanchone, A and Girard, CL 2016. Effects of dietary nitrogen levels and energy sources on apparent ruminal synthesis of B vitamins in dairy cows. Journal of Dairy Science 99, 27302739.CrossRefGoogle Scholar
Bechdel, SI, Eckles, CH and Palmer, LS 1926. The vitamin B requirement of the calf. Journal of Dairy Science 9, 409438.CrossRefGoogle Scholar
Bechdel, SI, Honeywell, HE, Dutcher, RA and Knutsen, MH 1928. Synthesis of vitamin B in the rumen of the cow. Journal of Biological Chemistry 80, 231238.Google Scholar
Benchaar, C, Hassanat, F, Martineau, R and Gervais, R 2015. Linseed oil supplementation to dairy cows fed diets based on red clover silage or corn silage: effects on methane production, rumen fermentation, nutrient digestibility, N balance, and milk production. Journal of Dairy Science 98, 79938008.CrossRefGoogle ScholarPubMed
Castagnino, DS, Harvatine, KJ, Allen, MS, Gervais, R, Chouinard, PY and Girard, CL 2017. Short communication: Effect of fatty acid supplements on apparent ruminal synthesis of B vitamins in lactating dairy cows. Journal of Dairy Science 100, 81658169.CrossRefGoogle ScholarPubMed
Chen, B, Wang, C, Wang, YM and Liu, JX 2011. Effect of biotin on milk performance of dairy cattle: a meta-analysis. Journal of Dairy Science 94, 35373546.CrossRefGoogle ScholarPubMed
Combs, GF 2012. The vitamins, 4th edition. Elsevier Inc., Waltham, MA, USA.Google Scholar
Doreau, M and Ferlay, A 1995. Effect of dietary lipids on nitrogen metabolism in the rumen: a review. Livestock Production Science 43, 97110.CrossRefGoogle Scholar
Fanchone, A, Nozière, P, Portelli, J, Duriot, B, Largeau, V and Doreau, M 2013. Effects of nitrogen underfeeding and energy source on nitrogen ruminal metabolism, digestion, and nitrogen partitioning in dairy cows. Journal of Animal Science 91, 895906.CrossRefGoogle ScholarPubMed
Ferlay, A, Doreau, M, Martin, C and Chilliard, Y 2013. Effects of incremental amounts of extruded linseed on the milk fatty acid composition of dairy cows receiving hay or corn silage. Journal of Dairy Science 96, 65776595.CrossRefGoogle ScholarPubMed
Graulet, B, Matte, JJ, Desrochers, A, Doepel, L, Palin, MF and Girard, CL 2007. Effects of dietary supplements of folic acid and vitamin B12 on metabolism of dairy cows in early lactation. Journal of Dairy Science 90, 34423455.CrossRefGoogle ScholarPubMed
Harvatine, K and Allen, MS 2006. Effects of fatty acid supplements on ruminal and total tract nutrient digestion in lactating dairy cows. Journal of Dairy Science 89, 10921103.CrossRefGoogle ScholarPubMed
Institut National de la Recherche Agronomique (INRA) 2007. Alimentation des bovins, ovins et caprins. Besoins des animaux - valeurs des aliments. Quae Editions, Paris, France.Google Scholar
Johnson, KA and Johnson, DE 1995. Methane emissions from cattle. Journal of Animal Science 73, 24832492.CrossRefGoogle ScholarPubMed
Kon, SK and Porter, JWG 1954. The intestinal synthesis of vitamins in the ruminant. Vitamins and Hormones 12, 5368.CrossRefGoogle ScholarPubMed
Martin, C, Ferlay, A, Mosoni, P, Rochette, Y, Chilliard, Y and Doreau, M 2016. Increasing linseed supply in dairy cow diets based on hay or corn silage: effect on enteric methane emission, rumen microbial fermentation, and digestion. Journal of Dairy Science, 99, 34353456.CrossRefGoogle ScholarPubMed
Martin, C, Morgavi, DP and Doreau, M 2010. Methane mitigation in ruminants: from microbe to the farm scale. Animal 4, 351365.CrossRefGoogle ScholarPubMed
McDowell, LR 2000. Vitamins in animal and human nutrition, 2nd edition. Iowa State University Press, Ames, IA, USA.CrossRefGoogle Scholar
Rérat, A, Molle, J and LeBars, H 1958. Mise en évidence chez le mouton de la perméabilité du rumen aux vitamines B et conditions de leur absorption à ce niveau. Académie des Sciences de Paris. Comptes Rendus 246, 20512054.Google Scholar
Sauvant, D, Perez, JM and Tran, G 2002. Tables de composition et de valeur nutritive des matières premières destinées aux animaux d’élevage: porcs, volailles, bovins, ovins, caprins, lapins, chevaux, poissons. Institut National de la Recherche Agronomique, Paris, France.Google Scholar
Schwab, EC, Caraviello, DZ and Shaver, RD 2005. Review: a meta-analysis of lactation responses to supplemental dietary niacin in dairy cows. The Professional Animal Scientist 21, 239247.CrossRefGoogle Scholar
Schwab, EC, Schwab, CG, Shaver, RD, Girard, CL, Putnam, DE and Whitehouse, NL 2006. Dietary forage and nonfiber carbohydrate contents influence B-vitamin intake, duodenal flow, and apparent ruminal synthesis in lactating dairy cows. Journal of Dairy Science 89, 174187.CrossRefGoogle ScholarPubMed
Shaver, RD and Bal, MA 2000. Effect of dietary thiamin supplementation on milk production by dairy cows. Journal of Dairy Science 83, 23352340.CrossRefGoogle ScholarPubMed
Statistical Analysis System (SAS) 2008. SAS userʼs guide: statistics, Version 9.2 edition. SAS Institute Inc., Cary, NC, USA.Google Scholar
Van Nevel, C, Demeyer, D and De Smet, S 1993. Effect of lipids on rumen fermentation and kinetics of rumen digesta in sheep fed a restricted diet. Annales de Zootechnie 42, 156.CrossRefGoogle Scholar
Veissier, I 1999. Expérimentation animale: biologie, éthique, réglementation. Productions Animales 12, 365375.CrossRefGoogle Scholar