Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Riovanto, R.
De Marchi, M.
Cassandro, M.
and
Penasa, M.
2012.
Use of near infrared transmittance spectroscopy to predict fatty acid composition of chicken meat.
Food Chemistry,
Vol. 134,
Issue. 4,
p.
2459.
De Marchi, M.
Riovanto, R.
Penasa, M.
and
Cassandro, M.
2012.
At-line prediction of fatty acid profile in chicken breast using near infrared reflectance spectroscopy.
Meat Science,
Vol. 90,
Issue. 3,
p.
653.
De Marchi, M.
Toffanin, V.
Cassandro, M.
and
Penasa, M.
2013.
Prediction of coagulating and noncoagulating milk samples using mid-infrared spectroscopy.
Journal of Dairy Science,
Vol. 96,
Issue. 7,
p.
4707.
De Marchi, Massimo
2013.
On-line prediction of beef quality traits using near infrared spectroscopy.
Meat Science,
Vol. 94,
Issue. 4,
p.
455.
Ferragina, A.
Cipolat-Gotet, C.
Cecchinato, A.
and
Bittante, G.
2013.
The use of Fourier-transform infrared spectroscopy to predict cheese yield and nutrient recovery or whey loss traits from unprocessed bovine milk samples.
Journal of Dairy Science,
Vol. 96,
Issue. 12,
p.
7980.
Maurice-Van Eijndhoven, M.H.T.
Bovenhuis, H.
Soyeurt, H.
and
Calus, M.P.L.
2013.
Differences in milk fat composition predicted by mid-infrared spectrometry among dairy cattle breeds in the Netherlands.
Journal of Dairy Science,
Vol. 96,
Issue. 4,
p.
2570.
Bittante, G.
and
Cecchinato, A.
2013.
Genetic analysis of the Fourier-transform infrared spectra of bovine milk with emphasis on individual wavelengths related to specific chemical bonds.
Journal of Dairy Science,
Vol. 96,
Issue. 9,
p.
5991.
Tiezzi, F.
Pretto, D.
De Marchi, M.
Penasa, M.
and
Cassandro, M.
2013.
Heritability and repeatability of milk coagulation properties predicted by mid-infrared spectroscopy during routine data recording, and their relationships with milk yield and quality traits.
Animal,
Vol. 7,
Issue. 10,
p.
1592.
Coppa, Mauro
Revello-Chion, Andrea
Giaccone, Daniele
Ferlay, Anne
Tabacco, Ernesto
and
Borreani, Giorgio
2014.
Comparison of near and medium infrared spectroscopy to predict fatty acid composition on fresh and thawed milk.
Food Chemistry,
Vol. 150,
Issue. ,
p.
49.
Tullo, Emanuela
Frigo, Erika
Rossoni, Attilio
Finocchiaro, Raffaella
Serra, Marco
Rizzi, Nicoletta
Samorè, Antonia Bianca
Canavesi, Fabiola
Strillacci, Maria Giuseppina
Prinsen, Raphaelle Teresa Matilde Maria
and
Bagnato, Alessandro
2014.
Genetic Parameters of Fatty Acids in Italian Brown Swiss and Holstein Cows.
Italian Journal of Animal Science,
Vol. 13,
Issue. 3,
p.
3208.
Strillacci, M. G.
Frigo, E.
Canavesi, F.
Ungar, Y.
Schiavini, F.
Zaniboni, L.
Reghenzani, L.
Cozzi, M. C.
Samoré, A. B.
Kashi, Y.
Shimoni, E.
Tal-Stein, R.
Soller, M.
Lipkin, E.
and
Bagnato, A.
2014.
Quantitative trait loci mapping for conjugated linoleic acid, vaccenic acid and ∆9-desaturase in Italian Brown Swiss dairy cattle using selective DNA pooling.
Animal Genetics,
Vol. 45,
Issue. 4,
p.
485.
De Marchi, M.
Toffanin, V.
Cassandro, M.
and
Penasa, M.
2014.
Invited review: Mid-infrared spectroscopy as phenotyping tool for milk traits.
Journal of Dairy Science,
Vol. 97,
Issue. 3,
p.
1171.
Ferrand-Calmels, M.
Palhière, I.
Brochard, M.
Leray, O.
Astruc, J.M.
Aurel, M.R.
Barbey, S.
Bouvier, F.
Brunschwig, P.
Caillat, H.
Douguet, M.
Faucon-Lahalle, F.
Gelé, M.
Thomas, G.
Trommenschlager, J.M.
and
Larroque, H.
2014.
Prediction of fatty acid profiles in cow, ewe, and goat milk by mid-infrared spectrometry.
Journal of Dairy Science,
Vol. 97,
Issue. 1,
p.
17.
Eskildsen, C.E.
Rasmussen, M.A.
Engelsen, S.B.
Larsen, L.B.
Poulsen, N.A.
and
Skov, T.
2014.
Quantification of individual fatty acids in bovine milk by infrared spectroscopy and chemometrics: Understanding predictions of highly collinear reference variables.
Journal of Dairy Science,
Vol. 97,
Issue. 12,
p.
7940.
Toffanin, V.
De Marchi, M.
Lopez-Villalobos, N.
and
Cassandro, M.
2015.
Effectiveness of mid-infrared spectroscopy for prediction of the contents of calcium and phosphorus, and titratable acidity of milk and their relationship with milk quality and coagulation properties.
International Dairy Journal,
Vol. 41,
Issue. ,
p.
68.
Maurice-Van Eijndhoven, M.H.T.
Veerkamp, R.F.
Soyeurt, H.
and
Calus, M.P.L.
2015.
Heritability of milk fat composition is considerably lower for Meuse-Rhine-Yssel compared to Holstein Friesian cattle.
Livestock Science,
Vol. 180,
Issue. ,
p.
58.
Gottardo, P.
De Marchi, M.
Cassandro, M.
and
Penasa, M.
2015.
Technical note: Improving the accuracy of mid-infrared prediction models by selecting the most informative wavelengths.
Journal of Dairy Science,
Vol. 98,
Issue. 6,
p.
4168.
Ferragina, A.
de los Campos, G.
Vazquez, A.I.
Cecchinato, A.
and
Bittante, G.
2015.
Bayesian regression models outperform partial least squares methods for predicting milk components and technological properties using infrared spectral data.
Journal of Dairy Science,
Vol. 98,
Issue. 11,
p.
8133.
Frigo, Erika
Samorè, Antonia B
Reghenzani, Liliana
Bergomi, Nicola
Strillacci, Maria G
Schiavini, Fausta
Prinsen, Raphaelle TMM
Cozzi, Maria C
Serra, Marco
Rossoni, Attilio
and
Bagnato, Alessandro
2015.
Variation of milk components in the Italian Brown cattle.
Journal of Dairy Research,
Vol. 82,
Issue. 4,
p.
485.
Pellattiero, E.
Cecchinato, A.
Tagliapietra, F.
Schiavon, S.
and
Bittante, G.
2015.
The use of 2-dimensional gas chromatography to investigate the effect of rumen-protected conjugated linoleic acid, breed, and lactation stage on the fatty acid profile of sheep milk.
Journal of Dairy Science,
Vol. 98,
Issue. 4,
p.
2088.