Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T09:06:52.577Z Has data issue: false hasContentIssue false

Composition of free and adherent ruminal bacteria: inaccuracy of the microbial nutrient supply estimates obtained using free bacteria as reference samples and 15N as the marker

Published online by Cambridge University Press:  29 September 2011

J. González*
Affiliation:
Departamento de Producción Animal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
J. M. Arroyo
Affiliation:
Departamento de Producción Animal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
M. Ouarti
Affiliation:
Departamento de Producción Animal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
J. Guevara-González
Affiliation:
Departamento de Producción Animal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
C. A. Rodríguez
Affiliation:
Departamento de Producción Animal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
M. R. Alvir
Affiliation:
Departamento de Producción Animal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
V. J. Moya
Affiliation:
Departamento de Ciencia Animal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Valencia, 46022 Valencia, Spain
O. Piquer
Affiliation:
Departamento de Producción Animal, Sanidad Animal y Ciencia y Tecnología de los Alimentos, Universidad CEU Cardenal Herrera, 46113 Moncada-Valencia, Spain
*
Get access

Abstract

Previous studies have indicated that 15N enrichment of solid-associated bacteria (SAB) may be predicted from the same value in liquid-associated bacteria (LAB). The aims of this study were to confirm this and to measure the error in the nutrient supply from SAB, when LAB are used as the reference sample. For this purpose, the chemical and amino acid (AA) compositions of both the bacterial populations were studied in four experiments carried out on different groups of three rumen cannulated wethers. Diets (one in Experiments 1 and 4 and three in Experiments 2 and 3) had forage-to-concentrate ratios (dry matter (DM) basis) between 2 : 1 and 40 : 60, and were consumed at intake levels between 40 and 75 g DM/kg (BW)0.75. The bacteria samples were isolated after continuous infusion of (15NH4)2SO4 (40, 18, 30 and 25 mg 15N/day, in Experiments 1 to 4, respectively) for at least 14 days. In all experiments, SAB had consistently higher concentrations of organic matter (826 v. 716 g/kg DM, as average) and total lipids (192 v. 95 g/kg DM, as average) than LAB. Similar CP concentrations of both populations were observed, except a higher concentration in SAB than in LAB in Experiment 3. A consistent (in Experiment 4 only as tendency) higher AA-N/total N ratio (on average 17.5%) was observed in SAB than in LAB. The 15N enrichment in SAB was systematically lower than in LAB. On the basis of the results of all studies a close relationship was found between the 15N enrichment in SAB and LAB, which was shown irrespective of experiments. This relationship was established from Experiments 1 and 2 and the above cited previous results (n = 20; P < 0.001; R2 = 0.996), and then confirmed from the results of Experiments 3 and 4. These relationships between SAB and LAB demonstrate that CP supply from SAB is underevaluated by, on average, 21.2% when LAB are used as the reference. This underevaluation was higher for true protein and even higher for the lipid supply (32.5% and 59.6%, respectively, as an average of the four experiments). Large differences in AA profile were observed between SAB and LAB. The prediction equation obtained using 15N as the marker may be used to correct the errors associated with the traditional use of LAB as the reference sample, and therefore to obtain more accurate estimates of the microbial nutrient supply to the ruminants.

Type
Full Paper
Copyright
Copyright © The Animal Consortium 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahvenjärvi, S, Vanhatalo, A, Huhtanen, P 2002. Supplementing barley or rapeseed meal to dairy cows fed grass-red clover silage: I. Rumen degradability and microbial flow. Journal of Animal Science 80, 21762187.Google ScholarPubMed
Arroyo, JM, González, J 2009. Efficacy of the combined use of acids and heat to protect protein from sunflower meal against rumen degradation: 1. Metabolizable protein supply. In Ruminant physiology. Digestion, metabolism, and effects of nutrition on reproduction and welfare (ed. Y Chilliard, F Glasser, Y Faulconnier, F Bocquier, I Veissier and M Doreau), pp. 116117. Wageningen Academic Publishers, Wageningen, the Netherlands.Google Scholar
Association of Official Analytical Chemists (AOAC) 2000. Official methods of analysis, vol. 2, 17th edition. AOAC, Washington, DC, USA.Google Scholar
Bates, DB, Gillett, JA, Barao, SA, Bergen, WR 1985. The effect of specific growth rate and stage of growth on nucleic acid–protein values of pure cultures and mixed ruminal bacteria. Journal of Animal Science 61, 713724.Google Scholar
Bauchart, D, Legay-Carmier, F, Doreau, M, Jouany, JP 1986. Effects of the addition of non-protected fat in rations for milk cows over the concentration and chemical composition of rumen bacteria and protozoa. Reproduction Nutrition Development 26, 309310.CrossRefGoogle Scholar
Beckers, Y, Thewis, A, Maudoux, B, Francois, E 1995. Studies on the in situ nitrogen degradability corrected for bacterial contamination of concentrate feeds in steers. Journal of Animal Science 73, 220227.CrossRefGoogle ScholarPubMed
Benchaar, C, Bayourthe, C, Vernay, M, Moncoulon, R 1995. Composition chimique des bactéries libres ou adhérentes au contenu du rumen et du duodénum chez la vache (Chemical composition of free or attached bacteria from rumen or duodenum contents of cows). Annales de Zootechnie 44 (suppl.), 139.CrossRefGoogle Scholar
Boletín Oficial del Estado 2005. Real Decreto 1201/2005. Sobre protección de los animales utilizados para experimentación y otros fines científicos. BOE 252, 3436734391.Google Scholar
Brito, AF, Broderick, GA, Reynal, SM 2006. Effect of varying dietary ratios of alfalfa silage to corn silage on omasal flow and microbial protein synthesis in dairy cows. Journal of Dairy Science 89, 39393953.CrossRefGoogle ScholarPubMed
Carro, MD, Miller, EL 2002. Comparison of microbial markers (15N and purine bases) and bacterial isolates for the estimation of rumen microbial protein synthesis. Animal Science 75, 315321.CrossRefGoogle Scholar
Cecava, MJ, Merchen, NR, Gay, LC, Berger, LL 1990. Composition of ruminal bacteria harvested from steers as influenced by dietary energy level, feeding frequency, and isolation techniques. Journal of Dairy Science 73, 24802488.CrossRefGoogle ScholarPubMed
Chicunya, S, Miller, EL 1999. Effects of source of bacterial isolate and microbial marker on the magnitude of absolute values of microbial nitrogen yield in sheep. Proceedings of the British Society of Animal Science. BSAS, Penicuik, UK, 29pp.Google Scholar
Craig, WM, Brown, DR, Broderick, GA, Ricker, DB 1987. Post-prandial compositional changes of fluid- and particle-associated ruminal micro-organisms. Journal of Animal Science 65, 10421048.CrossRefGoogle Scholar
Cummins, CS 1989. Bacterial cell wall structure. In Practical handbook of microbiology (ed. MW O'leary), pp. 349379. CRC Press Inc., Florida.Google Scholar
Faichney, GJ 1980. Measurements in sheep of the quantity and composition of rumen digesta and the fractional outflow rates of digesta constituents. Australian Journal of Agricultural Research 311, 11291137.CrossRefGoogle Scholar
Fernandes, LF 2007. Protección de las proteínas de la harina de soja mediante el tratamiento combinado con ácido málico y calor. Ensayos in vivo. MS Thesis, International Centre for Advanced Mediterranean Agronomic Studies, Zaragoza, Spain.Google Scholar
Firkins, JL, Berger, LL, Merchen, NR, Fahey, GC Jr, Mulvaney, RL 1987. Ruminal nitrogen metabolism in steers as affected by feed intake and dietary urea concentration. Journal of Dairy Science 70, 23022311.CrossRefGoogle ScholarPubMed
Folch, J, Lees, M, Sloane Stanley, GH 1957. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226, 497509.CrossRefGoogle ScholarPubMed
González, J, Faría-Mármol, J, Rodríguez, CA, Ouarti, M, Alvir, MR, Centeno, C 2006. Protein value for ruminants of a sample of whole cotton seed. Animal Science 82, 7581.CrossRefGoogle Scholar
Ipharraguerre, RS, Reynal, M, Liñeiro, M, Broderick, GA, Clark, JH 2007. A comparison of sampling sites, digesta and microbial markers, and microbial references for assessing the postruminal supply of nutrients in dairy cows. Journal of Dairy Science 90, 19041919.CrossRefGoogle ScholarPubMed
Komisarczuk, S, Durand, M, Beaumatin, PH, Hannequart, G 1987. Utilisation de l'azote 15 pour la mesure de la protéosynthése microbienne dans les phases solide et liquide d'un fermenteur semi-continu (Rusitec) (Use of 15N to measure the microbial protein sinthesis in the solid and liquid phases of a semi-continuous fermenter (Rusitec)). Reproduction Nutrition Development 27, 261262.CrossRefGoogle Scholar
Korhonen, M, Ahvenjärvi, S, Vanhatalo, A, Huhtanen, P 2002. Supplementing barley or rapeseed meal to dairy cows fed grass-red clover silage: II. Amino acid profile of microbial fractions. Journal of Animal Science 80, 21882196.Google ScholarPubMed
Lalles, JP, Poncet, C, Toullec, R 1992. Composition en acides aminés des bacteries libres et des bacteries fixées aux particules alimentaires du retículo-rumen de veau sevré et du mouton recevant différentes rations. Annales de Zootechnie 41, 7576.CrossRefGoogle Scholar
Legay-Carmier, F, Bauchart, D 1989. Distribution of bacteria in the rumen contents of dairy cows given a diet supplemented with soya-bean oil. British Journal of Nutrition 61, 725740.CrossRefGoogle Scholar
Martin, C, Williams, AG, Michalet-Doreau, B 1994. Isolation and characteristics of the protozoal and bacterial fractions from bovine ruminal contents. Journal of Animal Science 72, 29622968.CrossRefGoogle ScholarPubMed
Martin, C, Bernard, L, Michalet-Doreau, B 1996. Influence of sampling time and diet on amino acid composition of protozoal and bacterial fractions from bovine ruminal contents. Journal of Animal Science 74, 11571163.CrossRefGoogle ScholarPubMed
Martín-Urúe, SM, Balcells, J, Zakraoui, F, Castrillo, C 1998. Quantification and chemical composition of mixed bacteria harvested from solid fractions of rumen digesta: effect of detachment procedure. Animal Feed Science and Technology 71, 269282.CrossRefGoogle Scholar
Merry, RJ, McAllan, AB 1983. A comparison of the chemical composition of mixed bacteria harvested from the liquid and solids fractions of rumen digesta. British Journal of Nutrition 50, 701709.CrossRefGoogle ScholarPubMed
Montgomery, DC, Peck, EA 1982. Introduction to linear regression analysis. Wiley, New York, USA.Google Scholar
Neidhardt, FC, Ingraham, JL, Schaechter, M 1990. Growth rate as a variable. In Physiology of the bacterial cell: a molecular approach, pp. 418441. Sinauer Associates, Inc. Publishers, Sunderland, MA, USA.Google Scholar
Ouarti, M, González, J, Fernández, LF, Alvir, MR, Rodríguez, CA 2006. Malic acid combined with heat treatment to protect protein from soybean meal against rumen degradation. Animal Research 55, 165175.CrossRefGoogle Scholar
Ramos, S, Tejido, ML, Martínez, ME, Ranilla, MJ, Carro, MD 2009. Microbial protein synthesis, ruminal digestion, microbial populations, and nitrogen balance in sheep fed diets varying in forage-to-concentrate ratio and type of forage. Journal of Animal Science 87, 29242934.CrossRefGoogle ScholarPubMed
Ranilla, MJ, Carro, MD, López, S, Valdés, C, Newbold, JC, Wallace, RJ 2000. 15N-ammonia incorporation by ruminal bacteria growing on different N sources. Reproduction Nutrition Development 40, 2199.Google Scholar
Reynal, SM, Broderick, GA, Bearzi, C 2005. Comparison of four markers for quantifying microbial protein flow from the rumen of lactating dairy cows. Journal of Dairy Science 88, 40654082.CrossRefGoogle ScholarPubMed
Rodríguez, CA, González, J, Alvir, MR, Redondo, R, Cajarville, C 2003. Effects of feed intake on composition of sheep rumen contents and their microbial population size. British Journal of Nutrition 89, 97103.CrossRefGoogle ScholarPubMed
Rodríguez, CA, González, J, Alvir, MR, Repetto, JL, Centeno, C, Lamrani, F 2000. Composition of bacteria harvested from the liquid and solid fractions of the rumen of sheep as influenced by intake level. British Journal of Nutrition 84, 369376.Google Scholar
Volden, H 1999. Effects of level of feeding and ruminally undegraded protein on ruminal bacteria protein synthesis, escape of dietary protein, intestinal amino acid profile, and performance of dairy cows. Journal of Animal Science 77, 19051918.Google Scholar
Yang, WZ, Beauchemin, KA, Rode, LM 2001. Effect of dietary factors on distribution and chemical composition of liquid- or solid-associated bacterial populations in the rumen of dairy cows. Journal of Animal Science 79, 27362746.Google Scholar