Published online by Cambridge University Press: 02 September 2010
Low frequency oscillatory motion (0·05 to 0·5 Hz) experienced in ships and road vehicles is known to cause motion sickness in humans and some predictive models are available. There have been very few studies of the incidence of motion sickness in pigs and none which has attempted to identify the frequencies of motion of transporters which are likely to be implicated. In this study, the vibration and motion characteristics of a commercial pig transporter were measured while seven individually penned 40-kg pigs were transported for short (100 min) journeys and 80-kg pigs penned in groups of 12 or 13 were transported for longer (4·5 h) journeys. Direct behavioural observations were made of individual pigs for symptoms of travel sickness (sniffing, foaming at the mouth, chomping, and retching or vomiting). A comparison was then made between the incidence of travel sickness in pigs and that expected in humans given the measured vehicle vibration characteristics. The low frequencies of motion measured on the transporter (0·01 to 0·2 Hz) were well within the range implicated in human motion sickness with considerable power in the longitudinal and lateral axes but little in the vertical axis. On both short and long journeys pigs exhibited symptoms of travel sickness. The likely incidence of travel sickness on the short journeys predicted by the human model was 24 to 31% which corresponds to approximately two of the seven 40-kg pigs becoming travel sick. The numbers observed were generally lower than this although the same pigs were transported twice each day for 2 days and this may have therefore reflected the effects of habituation. The incidence of travel sickness on the long journeys predicted by the human model was 34%. During these journeys which involved four groups of 80-kg pigs which were not repeatedly transported, 26% of pigs vomited or retched (13 out of 50) while 50% showed advanced symptoms of foaming and chomping. These results are not inconsistent with the human model which should form the basis offurther research.