Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T19:34:06.921Z Has data issue: false hasContentIssue false

Rumen microbial production estimated either from urinary purine derivative excretion or from direct measurements of 15N and purine bases as microbial markers: effect of protein source and rumen bacteria isolates

Published online by Cambridge University Press:  02 September 2010

J. F. Pérez
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza C/M.Servet 177, Zaragoza 50013, Spain
J. Balcells
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza C/M.Servet 177, Zaragoza 50013, Spain
J. A. Guada
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza C/M.Servet 177, Zaragoza 50013, Spain
C. Castrillo
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza C/M.Servet 177, Zaragoza 50013, Spain
Get access

Abstract

Four ewes fitted with ruminal and duodenal T-piece cannulae were each given six diets in a 6 × 4 factorial design. Diets or experimental treatments consisted of two ratios of forage: concentrate (700:150 (LC) and 400: 600 (HO). Forage was ammonia-treated straw and the concentrate was formulated with barley supplemented with one of three protein sources: sunflower meal, soya-bean meal or fish meal. Duodenal flows ofdigesta were estimated by the dual-phase technique using Co-EDTA and Yb acetate as liquid and solid markers. Microbial nitrogen (N) was estimated from the digesta flow of purine bases and 15N enrichment using as reference samples, bacterial isolates from the liquid (LAB) or solid (SAB) phase of rumen digesta.

Duodenal flow of purine bases (mmol/day) was lower on LC (12·9) than HC (17·7) diets but in both treatments it was depressed by fish meal (12·3) compared with either soya-bean (17·3) or sunflower meal (16·3) as supplements (s.e. 1·13). Urinary excretion of purine derivatives showed a similar trend, 8·6 v. III mmol/day in LC and HC respectively and 8·8 v. 10·4 and 10·5 mmol/day in fish meal, soya-bean and sunflower meal diets (s.e. 0·56), respectively. Variation in excretion of urinary purine derivatives was mainly associated with digestible organic matter intake with an average ratio of 1·7 (s.e. 0·11) mmol per 100 g digestible organic matter intake. Irrespective of the microbial marker used, microbial yield was higher in animals offered HC than in those offered LC and with soya-bean or sunflower meal compared with fish meal supplemented diets. The microbial purine bases/N (mmol/g) ratio varied between LAB (1·99, s.e. 0·092) and SAB (1·69, s.e. 0·071) isolates leading to different estimates of microbial-N yield (g) from duodenal purine bases (7·76 (s.e. 2·84) v. 9·13 (s.e. 3·24)), urinary excretion of allantoin (5·57 (s.e. 2·0) v. 6·57 (s.e. 2·03)) or total purine derivatives (6·43 (s.e. 2·39) v. 7·56 (s.e. 2·77)). Urinary excretion of allantoin or total purine derivatives provided consistently lower estimates of duodenal microbial-N than duodenal purine bases or 15N, although it closely reflected the pattern observed in direct measurements.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agricultural Research Council. 1984. The nutrient requirements of ruminant livestock. Supplement no. 1. Commonwealth Agricultural Bureaux, Slough.Google Scholar
Antoniewicz, A. M., Heinemann, W. W. and Hanks, E. M. 1981. Effect of level of feed intake and body mass on allantoin excretion and the allantoin to creatinine ratio in the urine of sheep. Roczniki Naukowe Zootechniki T8 1: 4965.Google Scholar
Balcells, J., Guada, J. A., Castrillo, C. and Gasa, J. 1991. Urinary excretion of allantoin and allantoin precursors by sheep after different rates of purine infusion into the duodenum. Journal of Agricultural Science, Cambridge 116: 309317.CrossRefGoogle Scholar
Balcells, J., Guada, J. A., Castrillo, C. and Gasa, J. 1993. Rumen digestion and urinary excretion of purine derivatives in response to urea supplementation of sodium-treated straw fed to sheep. British Journal of Nutrition 69: 721732.CrossRefGoogle ScholarPubMed
Balcells, J., Guada, J. A., Peiro, J. M. and Parker, D. S. 1992. Simultaneous determination of allantoin and oxypurines in biological fluids by high-performance liquid chromatography. Journal of Chromatography 575:153157.CrossRefGoogle ScholarPubMed
Bates, D. B., Gillett, J. A., Barao, S. A. and Berger, W. G. 1985. The effect of specific growth rate and stage of growth on nucleic acid-protein values of pure cultures and mixed ruminal bacteria. Journal of Animal Science 61: 713724.CrossRefGoogle Scholar
Bauchart, D., Legay-Carmier, F., Doreau, M. and Jouany, P. 1985. Effects de l'addition de matieres grasses non protegees a la ration de la vache laitiere sur la concentration et la composition chimique des bacteries et des protozoaires du rumen. Reproduction Nutrition, Development 26:309310.CrossRefGoogle Scholar
Beckers, Y., Thewis, A., Maudoux, B. and Francois, E. 1995. Studies on the in situ nitrogen degradability corrected for bacterial contamination of concentrate feeds in steers. Journal of Animal Science 73:220227.CrossRefGoogle ScholarPubMed
Broderick, G. A. and Merchen, N. R. 1992. Markers for quantifying microbial protein synthesis in the rumen. Journal of Dairy Science 75: 26182632.CrossRefGoogle ScholarPubMed
Buresh, R. J., Austin, E. R. and Craswell, E. T. 1982. Analytical methods in15N research. Fertilizer Research 3: 3762.CrossRefGoogle Scholar
Cecava, M. J., Merchen, N. R., Gay, L. C. and Berger, L. L. 1990. Composition of ruminal bacteria harvested from steers as influenced by dietary energy level, feeding frequency, and isolation techniques. Journal of Dairy Science 73: 24802488.CrossRefGoogle ScholarPubMed
Chen, X. B., Hovell, F. D. DeB., Ørskov, E. R. and Brown, D. S. 1990. Excretion of purine derivatives by ruminants: effect of exogenous nucleic acid supply on purine derivative excretion by sheep. British Journal of Nutrition 63: 131142.CrossRefGoogle ScholarPubMed
Clark, J. H., Klusmeyer, T. H. and Cameron, M. R. 1990. Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows. Journal of Dairy Science 75: 23042323.CrossRefGoogle Scholar
Craig, W. M, Broderick, G. A. and Ricker, D. B. 1987. Quantitation of microorganisms associated with the particulate phase of ruminal ingesta. Journal of Nutrition 117: 5662.CrossRefGoogle ScholarPubMed
Faichney, G. C. 1975. The use of markers to partition digestion within the gastrointestinal tract of ruminants. In Digestion and metabolism in the ruminant (ed. MacDonald, I. W. and Warner, A. C. I.), pp. 277291. Armidale University of New England Publishing Unit.Google Scholar
Firkins, J. L., Berger, L. L., Merchen, N. R., Fahey, G. C. Jr and Mulvaney, R. L. 1987. Ruminal nitrogen metabolism in steers as affected by feed intake and dietary urea concentration. Journal of Dairy Science 70:23022311.CrossRefGoogle ScholarPubMed
Firkins, J. L., Weis, W. P. and Piwonka, E. J. 1992. Quantification of intraruminal recycling of microbial nitrogen using nitrogen-15. Journal of Animal Science 70: 32233233.CrossRefGoogle ScholarPubMed
Fondevila, M., Castrillo, C, Guada, J. A. and Balcells, J. 1994. Effect of ammonia treatment and carbohydrate supplementation of barley straw on rumen liquid characteristics and substrate degradation by sheep. Animal Feed Science and Technology 22: 305320.Google Scholar
France, J. and Siddons, R. C. 1993. Volatile fatty acid production. In Quantitative aspects of ruminant digestion and metabolism (ed. Forbes, J. M. and France, J.), pp. 107121. CAB International, Wallingford.Google Scholar
Goering, H. K. and Van Soest, P. J. 1975. Forage fiber analysis. Agricultural handbook no. 379. Agricultural Research Service, USDA, Washington, DC.Google Scholar
Ha, J. K. and Kennelly, J. J. 1984. Influence of freeze-storage on nucleic acid concentration in bacteria and duodenal digesta. Canadian Journal of Animal Science 64: 791793.CrossRefGoogle Scholar
Harvey, W. R. 1987. Least squares and maximum likelihood mixed model, procedures and applications. Department of Dairy Science, Ohio State University, Columbus.Google Scholar
Ho, Y., Miller, K. W., Savaiano, D. A., Crane, R. T., Ericson, K. A. and Clifford, A. J. 1979. Absorption and metabolism of orally administered purines in fed and fasted rats. Journal of Nutrition 109:13771382.CrossRefGoogle ScholarPubMed
John, A. and Ulyatt, M. J. 1984. Measurement of protozoa using phosphatidyl choline and of bacteria using nucleic acids in the duodenal digesta of sheep fed chaffed lucerne hay (Medicago sativa L.) diets. Journal of Agricultural Science, Cambridge 102:3344.CrossRefGoogle Scholar
Jouany, J. P. 1982. Volatile fatty acid and alcohol determinations in digestive contents, silage juices, bacterial cultures and anaerobic fermentors contents. Science Aliments 2:131144.Google Scholar
Kang-Meznarich, J. H. and Broderick, G. A. 1980. Effects of incremental urea supplementation on ruminal ammonia concentration and bacterial protein formation. Journal of Animal Science 51:422431.CrossRefGoogle Scholar
Koening, S. E., Schelling, G. E., Mitchell, G. E. Jr and Tucker, R. E. 1980. Purine and pyrimidine bases as potential indicators of microbial protein synthesis. Journal of Animal Science 51: 2538.Google Scholar
Laurent, F., Blanchart, G. and Vignon, B. 1983. Relation entre I'excretion urinaire d'allantoine et Yutilisation de I'azote chez le chevre laitiere. IV Symp. Int. Metabolism et nutrition azotes. INRA Publications (les Colloques d l'INRA), II (16): 175178.Google Scholar
Legay-Carmier, F. and Bauchart, D. 1989. Distribution of bacteria in the rumen contents of dairy cows given a diet supplemented with soya-bean oil. British Journal of Nutrition 61: 725740.CrossRefGoogle Scholar
Lindberg, J. E. 1989. Nitrogen metabolism and urinary excretion of purines in goat kids. British Journal of Nutrition 61:309321.CrossRefGoogle ScholarPubMed
McAllan, A. B., Cockburn, J. E., Williams, A. P. and Smith, R. H. 1988. The degradation of different protein supplements in the rumen of steers and the effect of these supplements on carbohydrate digestion. British Journal of Nutrition 60: 669682.CrossRefGoogle ScholarPubMed
McAllan, A. B. 1980. The degradation of nucleic acids in, and the removal of breakdown products from the small intestines of steers. British Journal of Nutrition 44: 99112.CrossRefGoogle ScholarPubMed
McCarthy, R. D., Klusmeyer, T. H., Vicini, J. L. and Clark, J. H. 1989. Effects of source of protein and carbohydrate on ruminal fermentation and passage of nutrients to the small intestine of lactating cows. Journal of Dairy Science 72: 20022016.CrossRefGoogle Scholar
Mackinon, A. M. and Deller, D. J. 1973. Purine nucleotide biosynthesis in gastrointestinal mucosa. Biochimica et Biophysica Ada 319:118.CrossRefGoogle Scholar
Martin Orúe, S. M., Balcells, J., Guada, J. A. and Castrillo, C. 1995. Endogenous purine and pyrimidine derivative excretion in pregnant sows. British Journal of Nutrition 73: 375385.CrossRefGoogle ScholarPubMed
Mathers, J. C. and Miller, E. L. 1981. Quantitative studies of food protein degradation and the energetic efficiency of microbial protein synthesis in the rumen of sheep given chopped lucerne and rolled barley. British Journal of Nutrition 45: 587604.CrossRefGoogle ScholarPubMed
Merry, R. J. and McAllan, A. B. 1983. A comparison of the chemical composition of mixed rumen bacteria harvested from the liquid and solid fractions of rumen digesta. British Journal of Nutrition 50: 701709.CrossRefGoogle ScholarPubMed
Minato, H. and Suto, T. 1978. Technique for fractionation of bacteria in rumen microbial ecosystem. II. Attachment of bacteria isolated from bovine rumen to cellulose powder in vitro and elution of bacteria attached therefrom. Journal of General and Applied Microbiology 24:116.CrossRefGoogle Scholar
Olubobokun, J. A. and Craig, W. M. 1990. Quantity and characteristics of microorganisms associated with ruminal fluid or particles. Journal of Animal Science 68: 33603370.Google Scholar
Pérez, J. F., Balcells, J., Guada, J. A. and Castrillo, C. 1996. Determinations of rumen microbial-N production in sheep. A comparison of urinary purine excretion with methods using15 and purine bases as markers of microbial-N entering the duodenum. British Journal of Nutrition 75: 699709.Google Scholar
Pérez, J. F, Balcells, J., Guada, J. A. and Surra, J. C. 1995. Contribution of dietary purine bases to duodenal digesta: effect of forage/concentrate ratio. Animal Science 60: 544 (abstr.).Google Scholar
Siddons, R. C, Paradine, J., Beever, D. E. and Cornell, P. R. 1985. Ytterbium acetate as a particulate-phase digesta-flow marker. British Journal of Nutrition 54:509519.Google Scholar
Smith, R. H., McAllan, A. B., Hewitt, D. and Lewis, P. E. 1978. Estimation of amounts of microbial and dietary nitrogen compounds entering the duodenum of cattle. Journal of Agricultural Science, Cambridge 90:557568.CrossRefGoogle Scholar
Sonoda, T. and Tatibana, M. 1978. Metabolic fate of pyrimidines and purines in dietary nucleic acids ingested by mice. Biochimica et Biophysica Acta 521:5566.CrossRefGoogle ScholarPubMed
Steel, R. G. D. and Torrie, J. H. 1980. Principles and procedures of statistics, second edition. McGraw-Hill, New York.Google Scholar
Surra, J. C. E. 1994. Excretion de los derivados metabolicos de las bases puricas en la especie ovina. Tesis Doctoral, Universidad de Zaragoza.Google Scholar
Van Soest, P. J. 1982. Nutritional ecology of the ruminant. O. and B. Books Inc., Corvallis, Oregon.Google Scholar
Zinn, R. A. and Owens, F. N. 1986. A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Canadian Journal of Animal Science 66: 157166.CrossRefGoogle Scholar