Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T03:33:10.292Z Has data issue: false hasContentIssue false

Protein composition and variation of caprine colostrum (Murciano-Granadina breed) by means of polyacrylamide-sds gel electrophoresis

Published online by Cambridge University Press:  02 September 2010

A. J. Quiles
Affiliation:
Departamento Producción Animal, Facultad Veterinaria, 30100-Espinardo, Murcia, Spain
C. Gonzalo
Affiliation:
Deparamento Producción Animal, Facultad Veterinaria, 24071-León, Spain
F. Fuentes
Affiliation:
Departamento Producción Animal, Facultad Veterinaria, 30100-Espinardo, Murcia, Spain
M. Hevia
Affiliation:
Departamento Producción Animal, Facultad Veterinaria, 30100-Espinardo, Murcia, Spain
J. M. Sanchez
Affiliation:
Deparamento Producción Animal, Facultad Veterinaria, 24071-León, Spain
Get access

Abstract

The variation in the content of total protein, total casein, whey protein, α-casein, β-casein, k-casein, α-lactalbumin, β-lactoglobulin and ‘other’ whey proteins of the mammary secretion was studied in 44 goats of the Murciano-Granadina breed (Spain) from the 1st to the 4th day after parturition.

The concentration of all the protein variables showed a marked decrease from the 1st to the 4th day after parturition (P < 0·001). In whey proteins this decrease was more marked from the 1st (67·1 g/1) to the 2nd day after parturition (21·6 g/1), whereas the total caseins sharply decreased from the 2nd (62·6 g/1) to the 3rd day after parturition (39·0 g/1).

Stepwise discriminant analysis revealed that, except for the k-casein, all the proteins resulting from the electrophoretic fractionation had a discriminant power between the dates of sampling (P < 0·001). The multivariant analysis did not show statistical differences in the electrophoretic fractions corresponding to the samples on the 3rd and 4th days after parturition. According to such fractionation, the transition from colostrum to milk should take place on the 2nd day after parturition.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agrawal, K. P. and Bhattacharyya, N. K. 1980. Note on the composition of colostrum and its transition to normal milk in Indian dwarf goats. Indian Journal of Animal Science 50: 782784.Google Scholar
Akinsoyinu, A. O. and Akinyele, I. O. 1979. Major elements in milk of the West African dwarf goats as affected by stage of lactation. Journal of Dairy Research 46: 427431.CrossRefGoogle ScholarPubMed
Akinsoyinu, A. O., Mba, A. U. and Olubajo, F. O. 1977. Studies on milk yield and composition of the West African dwarf goat in Nigeria. Journal of Dairy Research 44: 5762.CrossRefGoogle ScholarPubMed
Assenat, L. 1967. [A contribution to the study of a method identification of milk and cheese by means of poyacrylamide gel electrophoresis.] Le Lait 47: 393414.CrossRefGoogle Scholar
Butler, J. E. 1974. Immunoglobulins of the mammary secretions. In Lactation, a Comprehensive Treatise. Vol. III (ed. Larson, B. L. and Smith, V. R.), pp. 217255. Academic Press, New York.Google Scholar
Csapó, J., Csapó, J. and Lengyel, A. 1986. [Colostrum and milk composition in ewes.] Hungarian Agricultural Review 36: 314 (Abstr.).Google Scholar
Dixon, W. J. 1983. BMDP Statistical Software. University of California Press, Los Angeles.Google Scholar
Fleet, I. R., Goode, J. A., Hamon, M. H., Laurie, M. S., Linzell, J. L. and Peaker, M. 1975. Secretory activity of goat mammary glands during pregnancy and the onset of lactation. Journal of Physiology 215: 763773.CrossRefGoogle Scholar
Ghosh, T. K., Bhattacharyya, B., Sinha, R. and Moitra, D. N. 1982. Effect of lactation length on composition of milk in Black Bengal does. Indian Journal of Dairy Science 35: 433435.Google Scholar
Grappin, R., Jeunet, R., Pillet, R. and Le Toquin, A. 1981. Study of goat's milk. I. The composition of goat's milk in fat, protein and nitrogen fractions. Le Lait 61: 117133.CrossRefGoogle Scholar
Hunter, A. G., Reneau, J. K. and Williams, J. B. 1977. Factors affecting IgG concentration in day-old lambs. Journal of Animal Science 45: 11461151.CrossRefGoogle ScholarPubMed
Hyzy, J. 1974. Determination of the yield and composition of colostrum and milk in Polish Longwool ewes from Pomerania. Rocznicki Nauk Roliniczych 96: 4350.Google Scholar
Jenness, R. 1980. Composition and characteristics of goat milk: review 1968–1979. Journal of Dairy Science 63: 16051630.CrossRefGoogle Scholar
Linzell, J. L. and Peaker, M. 1974. Changes in colostrum composition and in the permeability of the mammary epithelium at about the time of parturition in the goat. Journal of Physiology 243: 129151.CrossRefGoogle ScholarPubMed
Lomba, F., Fumiére, J., Tshibangu, M., Chavaux, G. and Bienfet, V. 1978. Immunoglobulin transfer to calves and health problems in large bovine units. Annales de Recherches Vétérinaires 9: 353360.Google ScholarPubMed
McFadden, T. B., Akers, R. M. and Kazmer, G. W. 1987. Alpha-lactalbumin in bovine serum: Relationships with udder development and function. Journal of Dairy Science 70: 259264.CrossRefGoogle Scholar
Ng-Kwai-Hang, K. F. and Kroeker, E. M. 1984. Rapid separation and quantification of major caseins and whey proteins of bovine milk by polyacrylamide gel electrophoresis. Journal of Dairy Science 67: 30523056.CrossRefGoogle Scholar
Pahud, J. J. and Mach, J. P. 1970. Identification of secretory IgA, free secretory piece and serum IgA in the ovine and caprine species. Inmunochemistry 7: 679686.CrossRefGoogle ScholarPubMed
Perrin, D. R. 1958. The chemical composition of the colostrum and milk of the ewe. Journal of Dairy Research 25: 7074.CrossRefGoogle Scholar
Sanz, R., Ovejero, F. J. and Zorita, E. 1973. [Evolution of the chemical composition of the ewe‘s colostrum.] Annales de la Facultad de Veterinaria de León 19: 273279.Google Scholar
Sanchez, E., Moreno, P., Ocio, E. and Moreno, M. D. 1982. [Evolution of the chemical composition of the colostrum of the Murciana goat in its first lactation.] VIII Jornadas Cientificas de la Sociedad Española de Ovinotecnia y Caprinotecnia, Murcia (Spain), pp. 377383.Google Scholar
Schmidt, D. G. 1982. Association of caseins and casein micelle structure. In Developments in Dairy Chemistry-1 (ed. Fox, P. F.), pp. 6186. Applied Science Publishers, London.Google Scholar
Storry, J. E., Grandison, A. S., Millard, D., Owen, A. J. and Ford, G. D. 1983. Chemical composition and coagulating properties of renneted milks from different breeds and species of ruminant. Journal of Dairy Research 50: 215229.CrossRefGoogle Scholar
Verma, N. K. and Chawla, D. S. 1984. Composition of colostrum and normal milk of dairy goats. Asian Journal of Dairy Research 3: 179182.Google Scholar
Vihan, V. S. 1986. Sheep and goat immunoglobulins and their effect on neonatal survivability and performance. World Review of Animal Production 22: (4), 6568.Google Scholar
Weber, K. and Osborn, H. 1969. The reliability of molecular weight determination by dodecyl sulfatepolyacrylamide gel electrophoresis. Journal of Biology and Chemistry 244: 44064412.CrossRefGoogle Scholar
Zygoyiannis, D. 1987. The milk yield and milk composition of the Greek indigenous goat (Capra prisca) as influenced by duration of suckling period. Animal Production 44: 107116.Google Scholar