Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T19:46:31.625Z Has data issue: false hasContentIssue false

Productivity of grazing Angus steers of different structural size

Published online by Cambridge University Press:  02 September 2010

A. J. Romera
Affiliation:
Estación Experimental Agropecuaria Balcarce, Instituto National de Tecnologia Agropecuaria (INTA), Casilla de Correos 276, 7620 Balcarce, Argentina
C. A. Mezzadra
Affiliation:
Estación Experimental Agropecuaria Balcarce, Instituto National de Tecnologia Agropecuaria (INTA), Casilla de Correos 276, 7620 Balcarce, Argentina Facultad de Ciencias Agrarias de Balcarce, UNMdP, Argentina
E. L. Villarreal
Affiliation:
Estación Experimental Agropecuaria Balcarce, Instituto National de Tecnologia Agropecuaria (INTA), Casilla de Correos 276, 7620 Balcarce, Argentina
M. A. Brizuela
Affiliation:
Facultad de Ciencias Agrarias de Balcarce, UNMdP, Argentina Comisión de Investigations Científicas de la Pcia de Buenos Aires, Argentina
P. M. Corva
Affiliation:
Facultad de Ciencias Agrarias de Balcarce, UNMdP, Argentina
Get access

Abstract

With the objective of studying the response patterns of two biotypes of different body (structural) size to stocking rate (SR) in terms of individual growth rate (ADG), meat production per ha (PROD) and backfat thickness (BFT) under grazing conditions, 64 steers of two biotypes of the Angus breed of different body size were used: small-sized (SB: frame score of 1·3 (s.d. 0·7)) and medium-sized (MB: 2·9 (s.d. 0·6)). Four levels of SR were applied (1·8, 2·3, 2·8 and 3·3 steers per ha). The experiment lasted 241 days (April to December). Animals were weighed every 14 days, forage availability (FA) was estimated on four occasions and BFT was recorded at the end of the experiment (between 12th and 13th ribs). There were no differences between biotypes in ADG. SB tended to be earlier maturing showing higher BFT (4·39 v. 3·97 mm; P = 0·22). ADG was affected by SR and was higher at lower SR (0·612, 0·529, 0·414 and 0·375 kg/day, for 1·8, 2·3, 2·8 and 3·3 steers per ha, respectively). Individual average daily gain of the MB was more variable across the seasons of the year. None of the variables showed effects of the biotype × SR interaction but differences in ADG between biotypes as a function of the SR were observed as a trend (P = 0·29). Despite the difference in frame score between biotypes it was not possible to associate it with consistent differences in the response variables. Individual productivity (potential) of MB was not reflected in a greater productivity per surface unit. The data from this experiment do not allow the choice of a particular biotype in order to optimize the productivity of the pastoral production systems.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiken, G. E., Pitman, W. D., Chambliss, C. G. and Portier, K. M. 1991. Responses of yearling steers to different stocking rates on subtropical grass-legume pastures. Journal of Animal Science. 69: 33483356.CrossRefGoogle Scholar
Beef Improvement Federation. 1990. Guidelines for uniform beef improvement programs. Oklahoma State University, Stillwater, USA.Google Scholar
Berenson, M. L., Levine, D. M. and Goldstein, M. 1983. Intermediate statistical methods and applications. Prentice-Inc., Englewood Cliffs, NJ.Google Scholar
Finlay, K. and Wilkinson, G. 1963. The analysis of adaptation in a plant breeding program. Australian Journal of Agricultural Research. 14: 742754.CrossRefGoogle Scholar
Fortin, A., Reid, J. T., Maiga, A. M., Sim, D. W. and Wellington, G. H. 1980. Effect of level of energy intake and influence of breed and sex on muscle growth and distribution in the bovine carcass. Journal of Animal Science. 51: 12881296.CrossRefGoogle ScholarPubMed
Graham, J. F. 1994. The per hectare productivity and efficiency of beef cows selected for different rates of growth. Proceedings of the Australian Society of Animal Production. 20: 2224.Google Scholar
Hart, R. H. 1972. Forage yield, stocking rate and beef gains on pasture. Herbage Abstracts. 42: 345353.Google Scholar
Heitschmidt, R. K. and Taylor, C. A. 1991. Livestock production. In Grazing management. An ecological (ed. Heitschmidt, R. K. and Stuth, J. W.), pp. 161177. Timber Press, Portland, Oregon.Google Scholar
Hodgson, J. 1985. The significance of sward characteristics i n the management of temperate sown pastures. Proceedings of the XV International Grassland Congress, pp. 6367.Google Scholar
Jenkins, T. G. and Ferrell, C. L. 1994. Productivity through weaning of nine breeds of cattle under varying feed availabilities. I. Initial evaluation. Journal of Animal Science. 72: 27872797.CrossRefGoogle ScholarPubMed
Jones, R. J. and Sandland, R. L. 1974. The relation between animal gain and stocking rate. Derivation of the relations from the results of grazing trials. Journal of Agricultural Science, Cambridge. 83: 335342.CrossRefGoogle Scholar
Klosterman, E. W. 1972. Beef cattle size for maximum efficiency. Journal of Animal Science. 34: 875881.CrossRefGoogle Scholar
McCall, D. G. and Marshall, P. R. 1991. Factors affecting beef finishing efficiency on pasture. Proceedings of the Zealand Society ofAnimal Production. 51: 453457.Google Scholar
McCarthy, F. D., Hawkins, D. R. and Berger, W. G. 1985. Dietary energy density and frame size effects on composition of gain in feedlot cattle. Journal of Animal Science. 60: 781791.CrossRefGoogle ScholarPubMed
Marco, O. N. Di, Corva, P. M. and Mendez, D. G. 1996. Evaluacion de dos lineas de novillos Angus de diferente tamano estructural. II. Gasto energetico y perdida de peso durante el ayuno. Investigacidn Agraria. Produccidn y Animates. 11: 149158.Google Scholar
Mezzadra, C., Corva, P. and Melucci, L. 1996. Evaluacion de dos lineas de novillos Angus de diferente tamano estructural. I. Production de carne bajo distintos niveles nutricionales. Investigacidn Agraria. Produccidn y Sanidad Animates. 11: 135147.Google Scholar
Mezzadra, C., Escuder, J. and Miquel, M. C. 1992. Effects of genotype and stocking density on post-weaning daily gain and meat production per hectare in cattle. Animal Production. 55: 6572.Google Scholar
Mezzadra, C. A. 1993. Efecto del biotipo y del piano nutricional sobre la productividad de novillos por hectarea bajo pastoreo directo. Revista de Investigaciones Agropecuarias. 24: 4758.Google Scholar
Miquel, M. C., Escuder, J., Cangiano, C. and Sevilla, G. 1990. Efecto del tipo racial y la carga sobre la ganancia de peso por unidad de superficie de novillos en pastoreo. Revista Argentina de Production Animal 10: 135146.Google Scholar
Morgan, J. H. L., Bird, P. R., Watson, M. J., Carck, A. J. and Cumming, K. N. 1993. Beef production from Hereford and Angus × Hereford steers grazed separately at two stocking rates. Australian Journal of Experimental Agriculture 33: 551555.CrossRefGoogle Scholar
Norton, B. E. 1986. Guidelines for determining stocking rates for saline shrubland. Reclamation and Vegetation Research. 5: 403422.Google Scholar
Nour, A. Y. M., Thonney, M. L., Stouffer, J. R. and White Jr, W. R. C. 1981. Muscle, fat and bone in serially slaughtered large dairy or small beef cattle fed corn or corn silage diets in one of two locations. Journal of Animal Science. 52: 512521.CrossRefGoogle Scholar
Statistical Analysis Systems Institute. 1988. SAS/STAT user's guide, release 6.03. Statistical Analysis Systems Institute Inc., Cary, NC.Google Scholar
Taylor, St C. S. 1965. A relation between mature size weight and the time taken to mature in mammals. Animal Production. 7: 203220.Google Scholar
Thonney, M. L., Heide, E. K., Duhaime, D. J., Nour, A. Y. M. and Oltenacu, P. A. 1981. Growth and feed efficiency of cattle of different mature sizes. Journal of Animal Science. 53: 354362.CrossRefGoogle Scholar
Webster, A. J. F. 1986. Factors affecting the body composition of growing and adult animals. Proceedings of the Nutrition Society. 45: 4553.CrossRefGoogle ScholarPubMed
White, D. H. 1987. Stocking rate. In Managed grasslands. Analytical studies, (ed. Snaydon, R. W.), pp. 227238. Elsevier Science Publishers, Amsterdam.Google Scholar
Whittemore, C. T. 1994. Causes and consequences of change in the mature size of the domestic pig. Outlook on Agriculture. 23: 5559.CrossRefGoogle Scholar
Williams, C. B., Bennett, G. L. and Keele, J. W. 1995. Simulated influence of postweaning production system on performance of different biological types of cattle. III. Biological efficiency. Journal of Animal Science. 73: 686698.CrossRefGoogle ScholarPubMed
Wilson, A. D., Harrington, G. N. and Beale, I. F. 1984. Grazing management. In Management of Australia's rangelands (ed. Harrington, G. N., Wilson, A. D. and Young, M. D.), pp. 129139. Commonwealth Scientific and Industrial Research Organisation, East Melbourne, Australia.Google Scholar