Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T02:07:13.216Z Has data issue: false hasContentIssue false

Prediction of carcass lean content by real-time ultrasound in Pietrain and negative stress Pietrain

Published online by Cambridge University Press:  18 August 2016

V. Verleyen
Affiliation:
University of Liege, Faculty of Veterinary Medicine, Biostatistics and Animal Selection, 20 Bd de Colonster, B 43, 4000 Liege, Belgium
P.L. Leroy
Affiliation:
University of Liege, Faculty of Veterinary Medicine, Biostatistics and Animal Selection, 20 Bd de Colonster, B 43, 4000 Liege, Belgium
Get access

Abstract

Real-time ultrasound data of backfat thickness, longissimus muscle depth and longissimus area were carried out on 335 pigs (164 gilts and 171 barrows) using the Pie Medical Scanner 200 equipped with an ASP-18 probe and 3·5 MHz to predict carcass lean content in positive stress Pietrain (TT) and negative stress Pietrain (CC or CT). They were given food ad libitum and slaughtered at an average age of 213 days and an average weight of 101 kg. The day before slaughter, longitudinal and transverse images were taken at the last rib. After slaughter, the lean meat content was estimated by a CGM (capteur gras-maigre) equipped with an 8-mm diameter Sydel probe. The carcass lean proportion was higher in homozygote TT than homozygote CC and heterozygote CT individuals (P < 0·05). Gilts had more lean meat than barrows (P < 0·05). The correlation between the lean meat proportion and ultrasound backfat thickness (UBFT) or ultrasound longissimus muscle depth (ULMD) respectively was moderate. The prediction of lean meat proportion using UBFT, ULMD and ULMA gave an R2 which varied from 0·35 to 0·79. Real-time ultrasound is a tool that could potentially be used to predict the composition of pig carcasses before slaughter particularly if measurements can be taken with a higher degree of accuracy than at present.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alliston, J. C., Kempster, A. J., Owen, M. G. and Ellis, M. 1982. An evaluation of three ultrasonic machines for predicting the body composition of live pigs of the same breed, sex and live weight. Animal Production 35: 165169.Google Scholar
Courchaine, J. K., Azain, M. J., Jones, R. D. and Glaze, T. M. 1996. Use of real-time ultrasound in the early finishing phase to predict carcass composition at harvest. http:// www.ads.uga.edu/annrpt/1996/96_255.htmGoogle Scholar
Cisneros, F., Ellis, M., Miller, K. D., Novakofski, J., Wilson, E. R. and McKeith, F. K. 1996. Comparison of transverse and longitudinal real-time ultrasound scans for prediction of lean cut yields and fat-free lean content in live pigs. Journal of Animal Science 74: 25662576.Google Scholar
Fisher, A. V. 1997. A review of the technique of estimating the composition of livestock using the velocity of ultrasound. Computer and Electronics in Agriculture 17: 217231.Google Scholar
Fujii, J., Otsu, K., Zorzato, F., De Leon, S., Khanna, V. K., Weiler, J. E., O’Brien, P. J. and MacLennan, D. H. 1991. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253: 448451.Google Scholar
Gresham, J. D., McPeake, S. R., Bernard, J. K. and Henderson, H. H. 1992. Commercial adaptation of ultrasonography to predict pork carcass composition from live animal and carcass measurements. Journal of Animal Science 70: 631639.Google Scholar
Gresham, J. D., McPeake, S. R., Bernard, J. K., Riemann, M. J., Wyatt, R. W. and Henderson, H. H. 1994. Prediction of live and carcass characteristics of market hogs by use of a single longitudinal ultrasonic scan. Journal of Animal Science 72: 1404.CrossRefGoogle ScholarPubMed
Grobet, L., Hanset, R. and Dasnois, C. 1992. Réponse au test à l’halothane et génotype au locus RYR1 du récepteur à la ryanodine chez des porcs croisés Piétrain. Annales de Médecine Vétérinaire 136: 249257.Google Scholar
Hanset, R., Dasnois, C., Scalais, S., Michaux, C. and Grobet, L. 1995a. Génotype au locus de sensibilité à l’halothane et caractères de croissance et de carcasse dans une F2 Piétrain ✕ Large White. Genetics, Selection, Evolution 27: 6376.Google Scholar
Hanset, R., Dasnois, C., Scalais, S., Michaux, C. and Grobet, L. 1995b. Effet de l’introgression dans le génome Piétrain de l’allèle normal au locus de sensibilité à l’halothane. Genetics, Selection, Evolution 27: 7788.Google Scholar
Hanset, R., Scalais, S. and Grobet, L. 1995c. Du Piétrain classique au Piétrain résistant à l’halothane ou Piétrain Réhal. Annales de Médecine Vétérinaire 139: 2335.Google Scholar
Hulsegge, B., Mateman, G., Merkus, G. S. M. and Walstra, P. 1999. Choice of probing site for classification of live pigs using ultrasonic measurements. Animal Science 68: 641645.Google Scholar
Larzul, C., Le Roy, P., Guéblez, A., Talmant, A., Gogué, J., Sellier, P. and Monin, G. 1997. Effet of halothane genotype (nn, Nn, NN) on growth, carcass and meat quality traits of pigs harvested at 95 kg or 125 kg live weight. Journal of Animal Breeding and Genetics 114: 309320.CrossRefGoogle ScholarPubMed
Leach, L. M., Ellis, M., Sutton, D. S., McKeith, F. K. and Wilson, E. R. 1996. The growth performance, carcass characteristic, and meat quality of halothane carrier and negative pigs. Journal of Animal Science 74: 934943.Google Scholar
Leroy, P. L., Beduin, J.-M., Verleyen, V., Lebailly, P. and Berti, F. 2001. Les attentes des consommateurs, des nouveaux critères de sélection porcine. Carrefour des productions animales, Gembloux, 24 January 2001, pp. 7483.Google Scholar
Leroy, P. L. and Verleyen, V. 1999a. Le porc Piétrain résistant au stress (ReHal) dans la filière porcine. In Quatrième carrefour des productions animales: les démarches de qualité en production de viandes, Gembloux, 27 January, pp. 3940.Google Scholar
Leroy, P. L. and Verleyen, V. 1999b. The new stress negative Piétrain line developed at the Faculty of Veterinary Medicine of the University of Liège. AIVETs meeting, Brugge, Belgium, pp. 2731.Google Scholar
Leroy, P. L. and Verleyen, V. 1999c. Performances of the Piétrain ReHal, the new stress negative Piétrain line. In Quality of meat and fat in pigs affected by genetics and nutrition, EAAP publication no. 100, Zürich, 22-26 August 1999, pp. 161164 Google Scholar
McLaren, D. G., Novakofski, J., Parrett, D. F., Lo, L. L., Singh, S.D., Neuman, K. R. and McKeith, F. K. 1991. A study of operator effects on ultrasonic measures of fat depth and longissimus muscle area in cattle, sheep and pigs. Journal of Animal Science 69: 5466.Google Scholar
Mallows, C. L. 1973. Some comments on C(p). Technometrics 15: 661.Google Scholar
Ministère des Classes Moyennes et de l’Agriculture. 1999. Arrêté ministériel relatif au classement des carcasses de porcs. Moniteur belge. http://www.just.fgov.be/cgi/ article_bodGoogle Scholar
O’Brien, P.J., Ball, R. O. and McLennan, D. H. 1994. Effect of heterozygosity for the mutation causing porcine stress syndome on carcass quality and live performance characteristics. Proceedings of the 13th international pig veterinary science congress, 26-30 June 1994, Bankok, Thailand, p. 481.Google Scholar
Pommier, S. A., Houde, A., Rousseau, F. and Savoie, Y. 1992. The effect of malignant hyperthermia genotye as determined by a restriction endonuclease assay on carcass characteristics of commercial crossbred pigs. Canadian Journal of Animal Science 72: 973976.CrossRefGoogle Scholar
Rempel, W. E., Lu, Ming Yu, Mickelson, J. R. and Louis, C. F. 1995. The effect of skeletal muscle ryanodine receptor genotype on pig performance and carcass quality traits. Animal Science 60: 249257.Google Scholar
Sather, A. P., Bailey, D. R. C. and Jones, S.D.M. 1996. Realtime ultrasound image analysis for the estimation of carcass yield and pork quality. Canadian Journal of Animal Science 76: 5562.Google Scholar
Sather, A. P., Jones, S. D. M. and Tong, A. K. W. 1991a. Halothane genotype by weight interactions on lean yield from pork carcasses. Canadian Journal of Animal Science 71: 633643.Google Scholar
Sather, A. P., Murray, A. C., Zawadski, S. M. and Johnson, P. 1991b. The effect of halothane gene on pork production and meat quality of pigs reared under commercial conditions. Canadian Journal of Animal Science 71: 959967.Google Scholar
Searle, R. 1971. Linear models. John Wiley and Sons Inc., New York.Google Scholar
Simpson, S. P. and Webb, A. J. 1989. Growth and carcass performance of British Landrace pigs heterozygous at the halothane locus. Animal Production 49: 503509.Google Scholar
Smet, S.de, Pauwels, H., Eeckhout, W., Demeyer, D. I., Vervaeke, I., Bie, S.de, Voorde, G. van de and Casteels, M. 1992. Relationships between halothane sensitivity, carcass quality and meat quality in Belgian harvest pigs. In Pork quality, genetic and metabolic factors (ed. Puolanne, E., Demeyer, D.I., Ruusunen, M. and Ellis, S.), pp. 259270. CAB International, Wallingford.Google Scholar
Smet, S. M.de, Casteel, M., Voorde, G. van der and Oeckel, G. van. 1997. Approval of two methods of grading for pig carcasses in Belgium. Proceedings of the 48th annual meeting of the European Association for Animal Production, 25-28 August 1997, Vienna, p. 388.Google Scholar
Smet, S. M. de, Pauwels, H., Bie, S. de, Demeyer, D.I., Callewier, J. and Eeckhout, W. 1996. Effect of halothane genotype, breed, feed withdrawal, and lairage on pork quality of Belgian harvest pigs. Journal of Animal Science 74: 18541863.Google Scholar
Smith, B. S., Jones, W. R., Hough, J. D., Huffman, D. L., Mikel, W. B. and Mulvaney, D. R. 1992. Prediction of carcass characteristics by real-time ultrasound in barrow and gilts slaughtered at three weights. Journal of Animal Science, 70: 23042308.Google Scholar
Statistical Analysis Systems Institute. 1989. SAS/STAT user’s guide, version 6, fourth edition. SAS Institute Inc., Cary, NC.Google Scholar
Szabo, C., Babinszky, L., Verstegen, M. W. A., Vangen, O., Jansmann, A. J. M. and Kanis, E. 1999. The application of digital imaging techniques in the in vivo estimation of the body composition of pigs: review. Livestock Production Science 60: 111.CrossRefGoogle Scholar
Terry, C. A., Savell, J. W., Recio, H. A. and Cross, H. R. 1989. Using ultrasound technology to predict pork carcass. Journal of Animal Science 67: 1279.Google Scholar
Wittmann, W., Peschke, W., Littmann, E., Behringer, J., Birkenmaier, S., Dovc, P. and Förester, M. 1993. Mast-und Schlachtleistungen von DL-Kastraten in Abhängigkeit von MHS-Genotyp. Züchtungskunde 65: 197205.Google Scholar