Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T19:25:51.741Z Has data issue: false hasContentIssue false

Parity influences the utilization of exogenous glucose in suckler anoestrous Charolais beef cows

Published online by Cambridge University Press:  02 September 2010

A. A. Ponter
Affiliation:
Ecole Nationale Vétérinaire d'Alfort, Laboratoire d'Epidémiologie et de Gestion de la Santé Animale, 7 Avenue du Général-de-Gaulle, 94704 Maisons-Alfort Cedex, France
B. Grimard
Affiliation:
Ecole Nationale Vétérinaire d'Alfort, Laboratoire d'Epidémiologie et de Gestion de la Santé Animale, 7 Avenue du Général-de-Gaulle, 94704 Maisons-Alfort Cedex, France Union Nationale des Coopératives d'Elevage et d'Insémination Artificielle, Services Techniques, 13 rue Jouet, B.P. 65, 94703 Maisons-Alfort Cedex, France
P. Humblot
Affiliation:
Union Nationale des Coopératives d'Elevage et d'Insémination Artificielle, Services Techniques, 13 rue Jouet, B.P. 65, 94703 Maisons-Alfort Cedex, France
N. Novak
Affiliation:
Union Nationale des Coopératives d'Elevage et d'Insémination Artificielle, Services Techniques, 13 rue Jouet, B.P. 65, 94703 Maisons-Alfort Cedex, France
B. Khireddine
Affiliation:
Ecole Nationale Vétérinaire d'Alfort, Laboratoire d'Epidémiologie et de Gestion de la Santé Animale, 7 Avenue du Général-de-Gaulle, 94704 Maisons-Alfort Cedex, France
D. Sauvant
Affiliation:
Institut National Agronomique Paris-Grignon, INRA Laboratoire de Nutrition et Alimentation, 16 rue Claude Bernard, 75231 Paris cedex 05, France
M. Thibier
Affiliation:
Union Nationale des Coopératives d'Elevage et d'Insémination Artificielle, Services Techniques, 13 rue Jouet, B.P. 65, 94703 Maisons-Alfort Cedex, France
J.-P. Mialot
Affiliation:
Ecole Nationale Vétérinaire d'Alfort, Laboratoire d'Epidémiologie et de Gestion de la Santé Animale, 7 Avenue du Général-de-Gaulle, 94704 Maisons-Alfort Cedex, France
Get access

Abstract

This work was designed to study the influence of parity (multiparous (MP, no. = 9) or primiparous (PP, no. = 10)) and feeding level (control diet (CD; 1·00) or restricted diet (RD; proportionately 0·70 of requirements) in a 2×2 factorial design on the utilization of exogenous glucose in the suckler anoestrous Charolais beef cow. Lack of ovarian activity was confirmed by low circulating progesterone concentrations measured in weekly blood samples taken after parturition. An injection of glucose (1·5 mmol/kg live weight) lasting 20 min was given 30 days and 50 days post partum. Blood samples were collected before and for 120 min after the start of the injection and plasma insulin, glucose, non-esterified fatty acids (NEFA), β-hydroxybutyrate and urea were measured. Although plasma glucose concentrations were not significantly different between treatment groups in the period immediately after the injection of glucose, CD PP animals had higher plasma insulin levels than CD MP animals (at 25 min: 596·4, 283·8, 435·1 and 309·6 pmol/l, P < 0·05 for groups PP CD, MP CD, PP RD and MP RD respectively). Plasma NEFA concentrations were initially higher in the RD groups compared with the CD groups but were reduced by the glucose injection (P < 0·001). However, the PP RD cows took longer to respond to the exogenous glucose compared with the MP RD cows (at 25 min: PP RD: 133·2 and MP RD: 57·5 eq/l, P < 0·05). In conclusion, suckler anoestrous PP cows appear to require higher plasma insulin levels than MP cows to metabolize exogenous glucose and underfed PP cows were slower to reduce plasma NEFA after glucose injection than underfed MP cows.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agabriel, J., Giraud, J. M. and Petit, M. 1986. Determination et utilisation de la note d'etat d'engraissement en elevage. Bulletin Technique Centre de Recherches Zootechniques et Vétérinaire de Theix 66:4350.Google Scholar
Baird, G. D. 1982. Primary ketosis in the high producing dairy cow: clinical and subclinical disorders, treatment, prevention, and outlook. Journal of Dairy Science 65:110.CrossRefGoogle ScholarPubMed
Barnouin, J., El Idilbi, N., Chilliard, Y., Chacornac, J. P. and Lefaivre, R. 1986. Microdosage automatise sans deproteinisation du 3-hydroxy-butyrate plasmatique chez les bovins. Annales de Recherches Veterinaires 17:129139.Google Scholar
Chilliard, Y., Rémond, B., Sauvant, D. and Vermorel, M. 1983. Particularites du métabolisme énergetique. Bulletin Technique Centre de Recherches Zootechniques et Vétérinaire de Theix 53:3764.Google Scholar
Dagenais, G. R., Tancredi, R. G. and Zierler, K. L. 1976. Free fatty acid oxidation by forearm muscle at rest, and evidence for an intramuscular lipid pool in the human forearm. Journal of Clinical Investigation 58: 421431.CrossRefGoogle ScholarPubMed
Dijkstra, J. 1994. Production and absorption of volatile fatty acids in the rumen. Livestock Production Science 39:6169.CrossRefGoogle Scholar
Easdon, M. P., Chesworth, J. M., Aboul-Ela, M. B. E. and Henderson, G. D. 1985. The effect of undernutrition of beef cows on blood hormone and metabolite concentrations post partum. Reproduction, Nutrition, Développement 25:113126.CrossRefGoogle ScholarPubMed
Ferrannini, E., Barrett, E. J. and Bevilacqua, S. 1986. Effect of free fatty acids on blood amino acid levels in humans. American Journal of Physiology 250: E686–E694.Google Scholar
Garlick, P. J., Fern, M. and Preedy, V. R. 1983. Dietary effect of insulin and food intake on muscle protein synthesis in postabsorptive rats. Biochemical Journal 210: 669676.CrossRefGoogle Scholar
Gilbert, M., Basile, S., Baudelin, A. and Pere, M. C. 1993. Lowering plasma free fatty acid levels improves insulin action in conscious pregnant rabbits. American Journal of Physiology 264: E576–E582.Google ScholarPubMed
Grimard, B., Humblot, P., Parez, V., Mialot, J. P. and Thibier, M. 1992. Synchronisation de l'oestrus chez la vache Charolaise: facteurs de variation de la cyclicite pretraitement, du taux d'ovulation apres traitement et du taux de fertilite a l'oestrus induit. Elevage et Insemination 250: 517.Google Scholar
Grimard, B., Humblot, P., Ponter, A. A., Mialot, J. P., Sauvant, D. and Thibier, M. 1995. Influence of postpartum energy restriction on energy status, plasma LH and oestradiol secretion and follicular development in suckled beef cows. Journal of Reproduction and Fertility 104:173179.CrossRefGoogle ScholarPubMed
Groop, L. C. and Ferrannini, E. 1993. Insulin action and substrate competition. Bailliére's Clinical Endocrinology and Metabolism 7: 10071032.CrossRefGoogle ScholarPubMed
Hove, K. 1978. Insulin secretion in lactating cows: responses to glucose infused intravenously in normal, ketonemic, and starved animals. Journal of Dairy Science 61: 14071413.CrossRefGoogle ScholarPubMed
Humblot, P., Montigny, G. de, Jeanguyot, N., Tefedoie, F., Payen, B., Thibier, M. and Sasser, R. G. 1990. Pregnancy specific protein B and progesterone concentrations in French Alpine goats throughout gestation. Journal of Reproduction and Fertility 89:205212.CrossRefGoogle ScholarPubMed
McCann, J. P. and Reimers, T. J. 1985. Insulin response to glucose in estrous and diestrous obese and lean heifers. Journal of Animal Science 61: 619623.CrossRefGoogle ScholarPubMed
McClary, D. G., Sartin, J. L., Kemppainen, R. J. and Williams, J. C. 1988. Insulin and growth hormone responses to glucose infusion in mature and first-lactation dairy cows. American Journal of Veterinary Research 49: 17021704.Google ScholarPubMed
McClure, T. J. 1994. Nutritional and metabolic infertility in cow. Centre for Agriculture and Biosciences international, Wallingford.Google Scholar
Nattrass, M. 1991. Abnormalities of glucose homeostasis in diabetes. Proceedings of the Nutrition Society 50: 577581.CrossRefGoogle ScholarPubMed
Ndibualonji, B. B., Dehareng, D. and Godeau, J. M. 1995. La sous-alimentation énergétique et/ou azotée chez la vache tarie. Effets sur les acides gras volatils du rumen, quelques métabolites et hormones du plasma et l'excretion urinaire de la 3-méthylhistidine. Reproduction, Nutrition, Developpement 35:137154.CrossRefGoogle Scholar
Oxenreider, S. L. and Wagner, W. C. 1971. Effect of lactation and energy intake on postpartum ovarian activity in the cow. Journal of Animal Science 33:10261031.CrossRefGoogle ScholarPubMed
Pell, J. M., Elcock, C., Harding, R. L., Morrell, D. J., Simmonds, A. D. and Wallis, M. 1990. Growth, body composition, hormonal and metabolic status in lambs treated long term with growth hormone. British Journal Nutrition 63: 431445.CrossRefGoogle ScholarPubMed
Petit, M. 1988. Alimentation des vaches allaitantes. In Alimentation des bovins, ovins et caprins (ed. Jarrige, R.), pp. 159184. Institut National de la Recherche Agronomique, Paris.Google Scholar
Randel, P. J., Hales, C. N., Garland, P. B. and Newsholme, E. A. 1963. The glucose-fatty acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet i: 785789.CrossRefGoogle Scholar
Richards, M. W., Wettemann, R. P. and Schoenemann, H. M. 1989. Nutritional anestrus in beef cows: concentrations of glucose and nonesterified fatty acids in plasma and insulin in serum. Journal of Animal Science 67: 23542362.CrossRefGoogle ScholarPubMed
Seal, C. J. and Parker, D. S. 1996. Effect of intraruminal propionic acid infusion on metabolism of mesenteric- and portal-drained viscera in growing steers fed a forage diet. II. Ammonia, urea, amino acids, and peptides. Journal of Animal Science 74: 245256.CrossRefGoogle ScholarPubMed
Statistical Analysis Systems Institute. 1989. SAS/STAT user's guide, release 6.03. SAS Institute Inc., Cary, NC.Google Scholar
Sticker, L. S., Thompson, D. L. Jr, Bunting, L. D., Fernandez, J. M. and DePew, C. L. 1995. Dietary protein and (or) energy restriction in mares: plasma glucose, insulin, nonesterified fatty acid and urea nitrogen responses to feeding, glucose, and epinepherine. Journal of Animal Science 73:136144.CrossRefGoogle Scholar
Veenhuizen, J. J., Drackley, J. K., Richard, M. J., Sanderson, T. P., Miller, L. D. and Young, J. W. 1991. Metabolic changes in blood and liver during development and early treatment of experimental fatty liver and ketosis in cows. Journal of Dairy Science 74:42384253.CrossRefGoogle ScholarPubMed
Verite, R. and Chilliard, Y. 1992. Effect of age of dairy cows on body composition changes throughout the lactation cycle as measured with deuterited water. Annales de Zootechnie 41:118.CrossRefGoogle Scholar
Vernon, R. G. and Sasaki, S. 1991. Control of the responsiveness of tissues to hormones. In Physiological aspects of digestion and metabolism in ruminants (ed. Tsuda, T.,Sasaki, Y. and Kawashima, R.). Proceedings of the VII international symposium on ruminant physiology, pp. 155182. Academic Press Inc., San Diego.CrossRefGoogle Scholar