Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T19:28:35.694Z Has data issue: false hasContentIssue false

The nutritive value of five pasture species occurring in the summer grazing ranges of the Pyrenees

Published online by Cambridge University Press:  18 August 2016

A. Marinas
Affiliation:
Instituto Pirenaico de Ecología, CSIC, Apartado 64, 22700 Jaca, Huesca, Spain
R. García-González
Affiliation:
Instituto Pirenaico de Ecología, CSIC, Apartado 64, 22700 Jaca, Huesca, Spain
M. Fondevila*
Affiliation:
Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
*
Corresponding author. E-mail:[email protected]
Get access

Abstract

Five species of alpine pasture plants from the Pyrenees representing 3 botanical groups: grasses (Festuca eskia, Nardus stricta), forbs (Anthyllis vulneraria, Galium verum) and shrubs (Echinospartum horridum), were collected monthly from June to September and analysed for nitrogen (N) content, cell wall composition, in vitro enzymatic digestibility (DMDe) and volume of gas produced by microbial fermentation. Among the dicotyledenous varieties, A. vulneraria and G. verum showed the highest nutritive value whilst that of E. horridum was low due to high lignin content. Grasses showed moderate nutritive values in June rapidly decreasing thereafter. Nitrogen content and organic matter digestibility (OMDg) of A. vulneraria remained relatively constant through the sampling period whereas it abruptly decreased for remaining species from July. Gas production significantly differed among species during the first 48 h of microbial fermentation but not at later stages of fermentation. Collection date did not affect gas production before 24 h of incubation but significant differences were found thereafter with samples from June and July being more degraded than from August and September. Principal component analysis associated OMDg positively with N content and gas production and negatively with fibre content. Lignin proportion did not significantly correlate with gas production or with OMDg, suggesting that the degree of lignification is not the only factor affecting microbial fermentation but other factors such as lignin tissue locations may be involved. A. vulneraria has been revealed as very good forage with a high potential in extensive animal production systems. Both OMDg and DMDe methods seem more accurate than chemical analyses for evaluating forages at different stages of maturity.

Type
Ruminant nutrition, behaviour and production
Copyright
Copyright © British Society of Animal Science 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afifi, A. A. and Clark, V. 1996. Computer-aided multivariate analysis. Lifetime Learing Publications, Belmont, California.CrossRefGoogle Scholar
Aiple, K. P., Steingass, H. and Drochner, W. 1996. Prediction of the net energy content of raw materials and compound feeds for ruminants by different laboratory methods. Archives of Animal Nutrition 49: 213220.Google ScholarPubMed
Aldezábal, A. 2001. El sistema de pastoreo del Parque Nacional de Ordesa y Monte Perdido (Pirineo Central, Aragón). Interacción entre la vegetación supraforestal y los grandes herbívoros. Consejo de Protección de la Naturaleza de Aragón, Zaragoza, Spain.Google Scholar
Association of Official Analytical Chemists. 1990. Official methods of analysis, 15th edition. Arlington, VA.Google Scholar
Aufrère, J. and Michalet-Doreau, B. 1988. Comparison of methods for predicting digestibility of feeds. Animal Feed Science and Technology 20: 203218.CrossRefGoogle Scholar
Beever, D. E., Dhanoa, M. S., Losada, H. R., Evans, R. T., Cammell, S. B. and France, J. 1986. The effect of forage species and stage of harvest on the processes of digestion occurring in the rumen of cattle. British Journal of Nutrition 56: 439454.CrossRefGoogle ScholarPubMed
Braun-Blanquet, J. 1948. La Végétation Alpine des Pyrénées Orientales. Monografía de la Estación de Estudios Pirenaicos y del Instituto Español de Edafología, Ecología y Fisiología Vegetal, Barcelona, Spain.Google Scholar
France, J., Dhanoa, M. S., Theodorou, M. K., Lister, S. J., Davies, D. R. and Isac, D. 1993. A model to interpret gas accumulation profiles associated with in vitro degradation of ruminant feeds. Journal of Theoretical Biology 163: 99111.CrossRefGoogle Scholar
García-González, R. and Alvera, B. 1986. Relaciones entre la composición mineral de plantas abundantes en pastos supraforestales pirenaicos y su utilización por los rumiantes. XXVI Reunión Científíca de la SEEP, Consejería de Agricultura y Pesca, Oviedo, Spain, pp. 249265.Google Scholar
García-González, R., Gómez, D. and Remón, J. L. 1991. Application of vegetation maps to the study of grazing utilization: a case in the Western Pyrenees. Phytocoenology 3: 251256.Google Scholar
García-González, R., Hidalgo, R. and Montserrat, C. 1990. Patterns of time and space use by livestock in the Pyrenean summer ranges: a case study in the Aragon valley. Mountain Research and Development 10: 241255.CrossRefGoogle Scholar
Gómez, D., Castro, O. and Aldezábal, A. 1997. Species richness, biomass and plant production in subalpine plant communities in the Spanish Pyrenees. Proceedings of the 36th IAVS symposium, Universidad de La Laguna, Tenerife, Spain, pp. 101112.Google Scholar
González Ronquillo, M., Fondevila, M., Barrios Urdaneta, A. and Newman, Y. 1998. In vitro gas production from buffel grass (Cenchrus ciliaris L. ) fermentation in relation to the cutting interval, the level of nitrogen fertilisation and the season of growth. Animal Feed Science and Technology 72: 1932.CrossRefGoogle Scholar
Grenet, E. 1989. A comparison of the digestion and reduction in particle size of lucerne hay (Medicago sativa) and Italian ryegrass hay (Lolium italicum) in the ovine digestive tract. British Journal of Nutrition 62: 493507.CrossRefGoogle ScholarPubMed
Hanley, T. A. and McKendrick, J. D. 1983. Seasonal changes in chemical composition and nutritive value of native forages in a spruce-hemlock forest, southeastern Alaska. Pacific Northwest Forest and Range Experiment Station Forest Service, Department of Agriculture, Alaska.CrossRefGoogle Scholar
Hatfield, R. D. and Weimer, P. J. 1995. Degradation characteristics of isolated and in situ cell wall lucerne pectic polysaccharides by mixed ruminal microbes. Journal of the Science of Food and Agriculture 69: 185196.CrossRefGoogle Scholar
Jung, H. G. and Deetz, D. A. 1993. Cell wall lignification and degradability. In Forage cell wall structure and digestibility (ed. Jung, H. G. Buxton, D. R. Hatfield, R. D. and Ralph, J.), pp. 315346. ASA-CSSA-SSSA, Madison.CrossRefGoogle Scholar
Khazaal, K., Dentinho, M. T., Ribeiro, J. M. and Ørskov, E. R. 1995. Prediction of apparent digestibility and voluntary intake of hays fed to sheep: comparison between using fibre components, in vitro digestibility or characteristics of gas production or nylon bag degradation. Animal Science 61: 527538.CrossRefGoogle Scholar
López, S., Carro, M. D., González, J. S. and Ovejero, F. J. 1991a. The effect of method of forage conservation and harvest season on the rumen degradation of forages harvested from permanent mountain meadows. Animal Production 53: 177182 Google Scholar
López, S., Carro, M. D., González, J. S. and Ovejero, F. J. 1991b. Rumen degradation of the main forage species harvested from permanent mountain meadows in NorthWestern Spain. Journal of Agricultural Science, Cambridge 117: 363369.CrossRefGoogle Scholar
Menke, K. H. and Steingass, H. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28: 755.Google Scholar
Minson, D. J. 1998. A history of in vitro techniques. In In vitro techniques for measuring nutrient supply to ruminants (ed. Deaville, E. R. Owen, E. Adesogan, A. T. Rymer, C. Huntington, J. A. and Lawrence, T. L. J.), British Society of Animal Science occasional publication no. 22, pp. 1319.Google Scholar
Montserrat, P. and Fillat, F. 1990. The systems of grassland management in Spain. In Managed grasslands (ed. Breymeyer, A.), pp. 3770. Elsevier, Amsterdam.Google Scholar
Often, A. 1998. The use of Anthyllis vulneraria s. l. in artificial meadows in Norway, with some additional data on other “old” fodder plants. Blyttia 56: 208219.Google Scholar
StatSoft. 1995. Statistica for Windows. Microsoft, Tulsa, OK.Google Scholar
Theodorou, K. M., Williams, B. A., Dhanoa, M. S., McAllan, A. B. and France, J. 1994. A simple gas production method using a pressure transducter to determine the fermentation kinetics of ruminant feeds. Animal Feed Science Technology 48: 185197.CrossRefGoogle Scholar
Ugherughe, P. O. 1986. Relationship between digestibility of Bromus inermis and plant parts. Journal of Agronomy and Crop Science 157: 136143.CrossRefGoogle Scholar
Van Soest, P. J. 1994. Nutritional ecology of the ruminant. Cornell University Press, New York.CrossRefGoogle Scholar
Van Soest, P. J., Robertson, J. B. and Lewis, B. A. 1991. Methods for dietary fibre, neutral detergent fibre and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 35833597.CrossRefGoogle ScholarPubMed
Weiss, B. P. 1995. Estimation of digestibility of forages by laboratory methods. In Forage quality, evaluation and utilization (ed. Fahey, G. C. Collins, M. Mertens, D. R. and Moser, L. E.), pp. 644681. ASA-CSSA-SSSA, Madison, USA.Google Scholar
Wilson, J. R. and Hatfield, R. D. 1997. Structural and chemical changes of cell wall types during stem development: consequences for fibre degradation by rumen microflora. Australian Journal of Agricultural Research 48: 165180.CrossRefGoogle Scholar