Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T23:55:18.907Z Has data issue: false hasContentIssue false

Growth promotion by oral administration of enkephalinase inhibitors (thiorphan and acetorphan) in rats and mice

Published online by Cambridge University Press:  02 September 2010

P. J. M. Rivière
Affiliation:
Department of Pharmacology, Institut National Recherche Agronomique, 180 chemin de Tournefeuille, 31300 Toulouse, France
L. Buéno
Affiliation:
Department of Pharmacology, Institut National Recherche Agronomique, 180 chemin de Tournefeuille, 31300 Toulouse, France
Get access

Abstract

The effects of long-term oral administration of enkephalinase inhibitors (acetorphan and thiorphan) on food and water intake, live-weight gain and food conversion efficiency were investigated in growing rats and mice. In rats, daily drenching with acetorphan (an absorbable prodrug of thiorphan) at 1 mg/kg per day for 8 days did not alter food and water consumption but significantly increased live-weight gain (32·0 (s.d. 5·1) g for control rats v. 40·7 (s.d. 9·1) g for treated rats (P ≤ 0·05 U test) and improved food conversion efficiency (4·37 (s.d. 0·49) g food per g gain for control rats v. 3·70 (s.d. 0·67) g food per g gain for treated rats). In mice, lower doses (0·2 mg/kg per day) of thiorphan and acetorphan given in the drinking water similarly affected live-weight gain (7·7 (s.d. 0·9) g v. 6·0 (s.d. 1·6) g in 3-week-old mice receiving thiorphan and 2·6 (s.d. 0·4) g in 5-week-old mice receiving acetorphan) with a likely improvement in food conversion efficiency. These results suggest that oral administration of enkephalinase inhibitors may alter growth in rodents, probably by affecting the digestive process.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baile, C. A., Mclaughlin, C. L. and Della-Fera, A. M. 1986. Role of the cholecystokinin and opioid peptides in control of food intake. Physiological Reviews 66: 172234.CrossRefGoogle ScholarPubMed
Baker, P. K., Dalrymple, R. H., Ingle, D. L. and Ricks, C. A. 1984. Use of a p-adrenergic agonist to alter muscle and fat deposition in lambs. Journal of Animal Science 59: 12561261.CrossRefGoogle Scholar
Bouvier, M., Brecouevilie, J. M., Grimaud, J. C, Naudy, B., Conella, J. and Salducci, J. 1987. Effets du thiorphan sur l'activité électromyographique du colon chez rhomme et chez le rat. Gastroenterologie Clinique et Biologique 11: 247A.Google Scholar
Chipkin, R. E., Billard, W., Ahn, H. S., Sybertz, E. J. and Iorio, L. C. 1983. In vitro and in vivo activities of enkephalinase and angiotensin converting enzyme inhibitors. In Degradation of Endogenous Opioids, (Ehrenpreis, S. and Sicurety, F.), pp. 91106. Raven Press, New York.Google Scholar
Deschodt-Lanckman, M. and Strosberg, D. 1983. In vitro degradation of the C-terminal octapeptide of cholecystokinin by “enkephalinase A”. FEBS Letters 152: 109113.CrossRefGoogle ScholarPubMed
Goldstein, A., Tachibana, S., Lowney, L. Y., Hunkapillfr, M. and Hood, L. 1979. Dynorphin-(1–13), an extraordinarily potent opioid peptide. Proceeding of the National Academy of Sciences USA 76: 6666–.Google Scholar
Gunlemin, R., Ling, N. and Burgus, R. 1976. Endorphines, peptides d'origine hypothalamique et neurohypophysaire à activité morphinométique. Isolement ct structure moleculaire d'α-endorphine. Comptes Rendus des Sceances de I'Académie des Sciences 282: 783785.Google Scholar
Hughes, J., Smith, T. W., Kosterlitz, H. W., Fathergill, L. A., Morgan, B. A. and Morris, H. R. 1975. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature, London 258: 577579.Google Scholar
Kenny, A. J. 1977. Proteinases associated with cell membranes. In Proteinases in Mammalian Cells and Tissues (ed. Barret, A. J.), pp. 393444. Elsevier Biomedical Press, Amsterdam.Google Scholar
Leung, F. C., Taylor, J. E., Wien, S., Van Iderstine, A. 1986. Purified chicken growth hormone (GH) and a human pancreatic GH-releasing hormone increase body weight gain in chickens. Endocrinology 118: 1961–.CrossRefGoogle Scholar
Machlin, L. J. 1972. Effect of porcine growth hormone on growth and carcass composition of the pig. Journal of Animal Science 35: 794800.CrossRefGoogle ScholarPubMed
Morley, J. E., Levine, A. S., Yim, G. K. and Lowy, M. T. 1983. Opioid modulation of appetite. Neuroscience and Behavioral Reviews 7: 281305.CrossRefGoogle ScholarPubMed
Olson, G. A., Olson, R. D. and Kastin, A. J. 1982. Endogenous opiates: 1982. Peptides 4: 563576.Google Scholar
Olson, G. A., Olson, R. D. and Kastin, A. J. 1984. Endogenous opiates: 1983. Peptides 5: 975–992.Google Scholar
Olson, G. A., Olson, R. D. and Kastin, A. J. 1985. Endogenous opiates: 1984. Peptides 6: 769791.Google Scholar
Olson, G. A., Olson, R. D. and Kastin, A. J. 1986. Endogenous opiates: 1985. Peptides 7: 907963.Google Scholar
Olson, G. A., Olson, R. D., Kastin, A. J. and Coy, D. H. 1982. Endogenous opiates: 1981. Peptides 3: 10391072.Google Scholar
Primi, M. P. 1986. Contrôle central neuropeptidergique et hormonal des sécrétions intestinales chez le chien. Thèse de Doctoral, lnstitut National Polytechnique de Toulouse, France.Google Scholar
Rivieré, P. J. M. and Buéno, L. 1987. Origin of the stimulation of food intake by oral administration of enkephalinase inhibitors in sheep. Life Sciences. 41: 333339.Google Scholar
Rooues, B. P., Fournie-Zaluski, M. C., Soroca, E., Lecomte, J. M., Malfroy, B., Llorens, C. and Schwartz, J. C. 1980. The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice. Nature, London 288: 286288.Google Scholar
Rozé, C. and Dubrasouet, M. 1983. Endorphines, enképhalines et tube digestif. Gastroenterologie Clinique et Biologique 7: 177188.Google Scholar
Schwartz, J. C, Malfroy, B. and Baume, S. De La. 1981. Biological inactivation of enkephalins and the role of enkephalin-dipeptidyl-carboxypeptidase (“enkephalinase”) as neuropeptidase. Life Sciences 29: 17151740.Google Scholar
Wurtman, R. J. 1986. Ways that food can affect the brain. Nutrition Reviews(S): 26.CrossRefGoogle Scholar
Zagon, I. S. and Mclaughin, P. J. 1983. Naltrexone modulates growth in infant rats. Life Sciences 33: 24492454.CrossRefGoogle ScholarPubMed
Zagon, I. S. and Mclaughin, P. J. 1984. Naltrexon e modulates body and brain development in rats: a role for endogenous opioid systems in growth. Life Sciences 35: 2052064.CrossRefGoogle Scholar