Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T03:58:35.871Z Has data issue: false hasContentIssue false

Gaseous emissions from deep-litter pens with straw or sawdust for fattening pigs

Published online by Cambridge University Press:  18 August 2016

B. Nicks*
Affiliation:
Service d’Hygiène et Bioclimatologie, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster bâtiment B43, B-4000 Liège, Belgium
M. Laitat
Affiliation:
Service d’Hygiène et Bioclimatologie, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster bâtiment B43, B-4000 Liège, Belgium
F. Farnir
Affiliation:
Service d’Hygiène et Bioclimatologie, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster bâtiment B43, B-4000 Liège, Belgium
M. Vandenheede
Affiliation:
Service d’Hygiène et Bioclimatologie, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster bâtiment B43, B-4000 Liège, Belgium
A. Désiron
Affiliation:
Service d’Hygiène et Bioclimatologie, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster bâtiment B43, B-4000 Liège, Belgium
C. Verhaeghe
Affiliation:
Service d’Hygiène et Bioclimatologie, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster bâtiment B43, B-4000 Liège, Belgium
B. Canart
Affiliation:
Service d’Hygiène et Bioclimatologie, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster bâtiment B43, B-4000 Liège, Belgium
Get access

Abstract

Three successive batches of fattening pigs were raised on a deep litter of straw in one room and of sawdust in another. The quantities of litter used per pig were 40 kg of straw and 81 kg of sawdust.

Once a month, the emissions of ammonia, nitrous oxide, methane, carbon dioxide and water vapour were measured continuously for 6 days consecutively.

Gaseous emissions from pig raising on sawdust-based litter and straw-based litter were respectively 12·16 and 13·61 g per pig per day for ammonia (NH3), 4·96 and 7·39 g per pig per day for methane (CH4), 2·09 and 0·03 g per pig per day for nitrous oxide (N2O), 3·15 and 2·74 kg per pig per day for water (H2O) and 1·32 and 1·30 kg per pig per day for carbon dioxide (CO2). Differences between the emissions of the two litters were significant for N2O and H2O (P 0·01).

The nitrogen content of the manures collected at the end of the experiment was 1·47 kg per pig for the straw-based litter and 1·07 kg per pig for that based on sawdust. Nitrogen emissions were calculated under the assumption that no gases volatilized from the litter or from the animals other than NH3 and N2O. With the two litters, about 50% of nitrogen excreted by the pigs was emitted into the atmosphere in the form of N2.

Type
Non-ruminant nutrition, behaviour and production
Copyright
Copyright © British Society of Animal Science 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, G. A., Smith, R. J., Bundy, D. S. and Hammond, E.G. 1987. Model to predict gaseous contaminants in swine confinement buildings. Journal of Agricultural Engineering Research 37: 235253.CrossRefGoogle Scholar
Apsimon, H. M. and Kruse-Plass, M. 1999. The role of ammonia as an atmospheric pollutant. In Odour and ammonia emissions from livestock farming (ed. Nielsen, V. C. Voorburg, J. H. and L’Hermite, P.), pp. 1720. Elsevier Science Publishers, London.Google Scholar
Billiard, F. 1998. Froid et environnement. Bulletin du Conseil Général du Génie Rural, Eaux et Forêts 52: 4752.Google Scholar
Bonazzi, G. and Navarotto, P. L. 1992. Wood shaving litter for growing-finishing pigs. Proceedings of the workshop ‘deep litter systems for pig farming’ (ed. Voermans, J. A. M.), pp. 5776. Research Institute for Pig Husbandry, Rosmalen.Google Scholar
Comité|d’Orientation pour la Réduction de la Pollution des Eaux par les Nitrates, les phosphates et les produits phytosanitaires provenant des activités agricoles. 1996. Estimation des rejets d’azote et de phosphore des élevages de porcs. Impact des modifications de conduite alimentaire et des performances techniques. Ministère de l’Environnement, Ministère de l’Agriculture, de la Pêche et de l’Alimentation, Paris.Google Scholar
Commission Internationale du Génie Rural. 1984. Report of working group on climatization of animal houses. Scottish Farm Buildings Investigation Unit, Aberdeen.Google Scholar
Groenestein, C. M., Oosthoek, J., Montsma, H. and Reitsma, B. 1992. The emission of ammonia and other nitrogen compounds from deep litter systems for fattening pigs: a field study. Proceedings of the workshop ‘deep litter systems for pig farming’ (ed. A. M.|Voermans, J.), pp. 5156. Research Institute for Pig Husbandry, Rosmalen.Google Scholar
Groot Koerkamp, P., Metz, J., Uenk, G., Phillips, V., Holden, M., Sneath, R., Short, J., White, R., Hartung, J., Seedorf, J., Schröder, M., Linkert, K., Pedersen, S., Takai, H., Johnsen, J. and Wathes, C. 1998. Concentrations and emissions of ammonia in livestock buildings in Northern Europe. Journal of Agricultural Engineering Research 70: 7995.CrossRefGoogle Scholar
Groot Koerkamp, P. and Uenk, G. 1997. Climatic conditions and aerial pollutants in and emissions from commercial animal production systems in the Netherlands. Proceedings of the international symposium on ammonia and odour control from animal production facilities, Vinkeloord (ed. A. M.|Voermans, J. and Monteny, G. J.), pp. 139144.Google Scholar
Guillou, D., Dourmad, J. Y. and Noblet, J. 1993. Influence de l’alimentation, du stade physiologique et des performances sur les rejets azotés du porc à l’engrais, de la truie et du porcelet. Journées de la Recherche Porcine en France 25: 307314.Google Scholar
Guingand, N. and Granier, R. 2001. Comparaison caillebotis partiel et caillebotis intégral en engraissement. Effets sur les performances zootechniques et sur l’émission d’ammoniac. Journées de la Recherche Porcine en France 33: 3136.Google Scholar
Hendriks, J., Ni, J., Berckmans, D., Vinckier, C. and Goedsteels, V. 1997. Les émissions d’ammoniac des porcheries. Agricontact 297: 1316.Google Scholar
Hoy, S., Müller, K. and Willig, R. 1994. Results of continuous measurements of ammonia, dimethylamine and nitrous oxide in swine and broiler chicken stables with different keeping conditions by the help of sensor technique and multigasmonitoring. Proceedings of the eighth international congress on animal hygiene, International Society for Animal Hygiene, St Paul, Minnesota, pp. AH–6266.Google Scholar
Hoy, S., Willig, R. and Buchholz, I. 1992. Results from continuous measurements of ammonia in keeping fattening pigs on deep litter with additives in comparison with housing on slatted floor. Proceedings of the workshop ‘deep litter systems for pig farming’ (ed. A. M.|Voermans, J.), pp. 3750. Research Institute for Pig Husbandry, Rosmalen.Google Scholar
Kaiser, S. and Weghe, H.van den. 1997. Regulatory control of nitrogen emissions in a modified deep litter system. Proceedings of the international symposium on ammonia and odour control from animal production facilities, Vinkeloord (ed. A. M.|Voermans, J. and Monteny, G. J.), pp. 667675.Google Scholar
Kaufmann, R. 1997. Litière biomaîtrisée pour porcs à l’engrais: amélioration de la technique et valorisation de données importantes pour l’environnement. Journées de la Recherche Porcine en France 29: 311318.Google Scholar
Kermarrec, C. 1999. Bilan et transformations de l’azote en élevage intensif de porcs sur litière. Ph. D. thesis, Université de Rennes.Google Scholar
Lo, Y. Y. 1992. Application and practice of the pig-on-litter system in Hong-Kong (in-situ composting of pig manure). Proceedings of the workshop ‘deep litter systems for pig farming’ (ed. A. M.|Voermans, J.), pp. 1125. Research Institute for Pig Husbandry, Rosmalen.Google Scholar
Marlier, D., Nicks, B., Canart, B. and Shehi, R. 1994. Comparaison de l’évolution de deux litières biomaîtrisées à base de sciure ou de paille, pour porcs à l’engraissement. Annales de Médecine Vétérinaire 158: 4353.Google Scholar
Ni, J., Berckmans, D. and Vinckier, C. 1996. Influence of contaminated floor on ammonia emission from pig house. Proceedings of the agricultural-engineers 1996 congress, Madrid, 96B062.Google Scholar
Nicks, B., Désiron, A. and Canart, B. 1995. Bilan environnemental et zootechnique de l’engraissement de 4 lots de porcs sur litière biomaîtrisée. Journées de la Recherche Porcine en France 27: 337342.Google Scholar
Nicks, B., Désiron, A. and Canart, B. 1998. Comparaison de l’utilisation de sciure ou d’un mélange paille-sciure comme matériau de litière accumulée pour porcs charcutiers. Annales de Zootechnie 47: 107116.CrossRefGoogle Scholar
Shilton, A. 1994. Shallow beds, mean simpler waste management. Pig International 24: 1516.Google Scholar
Texier, C. 1997. Elevage porcin et respect de l’environnement. Institut Technique du Porc, Paris.Google Scholar
Texier, C. 1999. Les litières biomaîtrisées en porcherie. Techni-Porc 24: 2934.Google Scholar