Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T19:19:58.111Z Has data issue: false hasContentIssue false

Embryo manipulation in cattle breeding and production

Published online by Cambridge University Press:  02 September 2010

J. A. Woolliams
Affiliation:
AFRC Institute of Animal Physiology and Genetics Research, Edinburgh Research Station, Roslin, Midlothian EH25 9PS
Get access

Abstract

Developments, both recent and potential, in procedures for manipulating embryos are described. The procedures considered include: embryo transfer, multiple ovulation and embryo recovery, recovery of oocytes, in vitro maturation (IVM) and fertilization (IVF) of oocytes, in vitro culture of zygotes, embryo splitting and nuclear transfer, embryo storage, embryo sexing, gene transfer and embryo stem cells. The impact of these procedures on breeding strategies such as multiple ovulation and embryo transfer (MOET) nucleus breeding schemes and progeny testing are discussed for both dairy and beef cattle.

For MOET nucleus schemes all these procedures have potential applications in producing maximal rates of genetic progress for a fixed rate of inbreeding. With the current effectiveness of the procedures, embryo sexing and nuclear transfer would have the most impact. The potential for increasing genetic progress through progeny testing is enhanced using multiple ovulation, embryo recovery and transfer in cows to breed bulls, but no other procedures appeared to offer major benefits. The efficiency of beef production from the dairy herd could be increased either by using IVM and IVF to produce more beef-type calves or, potentially, by cloning and embryo transfer, to produce pure beef calves. Procedures leading to the production of clone families would make an impact on the evaluation of genotypes and environments. Gene transfer may be used to modify the composition of milk including the production of pharmaceutical proteins, and to increase milk yield or the efficiency of lean meat production.

It is concluded that, although much further research is required, the procedures discussed will have major implications for the structure and organization of dairy and beef cattle herds over the next decade.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anson, D. S., Austin, D. E. G. and Brownlee, G. G. 1985 Expression of active human clotting factor IX from recombinant DNA clones in mammalian cells. Nature, London 315: 683685.CrossRefGoogle Scholar
Beatty, R. A., Bennett, G. H., Hall, J. G., Hancock, J. L. and Stewart, D. L. 1969. An experiment with heterospermic insemination in cattle. Joumal of Reproduction and Fertility 19: 491502.CrossRefGoogle Scholar
Beatty, R. A., Stewart, D. L., Spooner, R. L. and Hancock, J. L. 1976. Evaluation by the heterospermic [semination technique of the differential effect of freezing at -196°C on fertility of individual bull semen. Journal of Reproducti on and FertUity 47: 377379.CrossRefGoogle ScholarPubMed
Biery, K. A., Bondioli, K. R. and Demayo, F. J. 1988. Gene transfer by pronuclear injection in the bovine. Theriogenology 29: 224 (Abstr.).CrossRefGoogle Scholar
Bradley, A., Evans, M., Kaufman, M. H. and Robertson, E. J. 1984. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines- Nature, London 309: 255256.Google Scholar
Brinster, R. L., Chen, H. Y., Trumbauer, M. E., Yagle, M. K. and Palmiter, R. D. 1985. Introducing genes into mice by direct injection. Proceedings of the National Academy of Sciences 82: 44384442.CrossRefGoogle Scholar
Busby, S., Kumar, A., Joseph, M., Halfpap, L., Insley, M., Berkner, K., Kurachi, K. and Woodbury, R. 1985. Expression of active human Factor IX in transected cells, Nature, London 316: 271273.Google Scholar
Christie, W. B. 1986. Proceedings of the 5th Annual Conference of the American Society for Embryo Transfer, pp. 3344.Google Scholar
Clark, A. J., Ali, S., Archibald, A. L., Bessos, H., Brown, P., Harri, S., McClenaghan, M., Prowse, C., Simons, J. P., Whitelaw, C. B. A. and Wilmut, I. 1989. The molecular manipulation of milk composition. Genome in press.CrossRefGoogle ScholarPubMed
Cundif, L. V. 1970. Expremental results on crossbreeding cattle for beef production. Journal of Animal Science 30: 694705.CrossRefGoogle Scholar
Cunningham, E. P. 1976. The use of egg transfer techniques in genetic improvement. In Egg Transfer in Cattle (ed. Rowson, L. E. A.) pp. 345354. Commission of the European Communities, Luxembourg.Google Scholar
Ellis, S. B., Bondioli, K. R., Williams, M. E., Pryor, J. H. and Harpold, M. M. 1988. Sex determination of bovine embryos using male-specific DNA probes. Theriogenology 29: 242 (Abst.).CrossRefGoogle Scholar
Evans, M. J. and Kaufman, M. H. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature, London 292: 154156.CrossRefGoogle ScholarPubMed
Eyestone, W. H., Vignieri, J. and First, N. L. 1987. Co-culture of early bovine embryo with oviductal epithelium. Theriogenology 27: 228 (Abstr.).CrossRefGoogle Scholar
Field, A. C., Woolliams, J. A., Dingwail, R. A. and Munro, C. S. 1984. Animal and dietary variation in the absorption and metabolism of phosphorus in sheep. Journal of Agricultural Science, Cambridge 103: 283291.CrossRefGoogle Scholar
Freeman, A. E. 1988. Breeding programs in dairy cattle — current and future considerations. In Advances in Animal Breeding (ed. Korver, S., Steen, H. A. M. van der, Arendonk, J. A. M. van, Bakker, H., Brascamp, E. W. and Dommerholt, J.), pp. 7389. Pudoc, Wageningen.Google Scholar
Gordon, I. 1982. Synchronisation of estrus and superovulation in cattle. In Mammalian Egg Transfer (ed. Adams, C. E.), pp. 6380. CRC Press, Boca Raton, Florida.Google Scholar
Gowe, R. S., Robertson, A. and Latter, B. D. H. 1959. Environment and poultry breeding problems. 5. The design of poultry control strains. Poultry Science 38: 462471.CrossRefGoogle Scholar
Gregory, K. E., Cundiff, L. V., Koch, R. M., Laster, D. B. and Smith, G. M. 1978. Heterosis and breed maternal and transmitted effects in beef cattle. III. Growth traits in steers. Journal of Animal Science 47: 10541062.CrossRefGoogle Scholar
Gregory, K. E., Koch, R. M., Laster, D. B., Cundiff, L. V. and Smith, G. M. 1978. Heterosis and breed maternal and transmitted effects in beef cattle. I. Preweaning traits. Journal of Animal Science 47: 10311041.CrossRefGoogle Scholar
Hammer, R. E., Pursel, R. D., Rexroad, C. E., Wall, R. J., Bolt, R. J., Ebert, J., Palmiter, R. D. and Brinster, R. L. 1985. Production of transgenic rabbits, sheep and pigs by microinjection. Nature, London 315: 680683.CrossRefGoogle ScholarPubMed
Hammond, J. 1950. Problems concerning the transplantation of fertilised ova or “artificial pregnancy”. Anales de la Facultad de Medicina, Montevideo 35: 810819.Google ScholarPubMed
Handyside, A., Hooper, M. L., Kaufman, M. H. and Wilmut, I. 1987. Towards the isolation of embryonal stem cell lines from the sheep. Roux's Archives of Developmental Biology 196: 185190.CrossRefGoogle ScholarPubMed
Hanrahan, J. P. and Owen, J. B. 1985. Variation and repeatability of ovulation rate in Cambridge ewes. Animal Production 40: 529 (Abstr.).Google Scholar
Hasler, J. F., McCauley, A. D., Lathrop, W. F. and Foote, R. H. 1987. Effect of donor-embryo-recipient interactions on pregnancy rate in a large-scale bovine embryo transfer program. Theriogenology 27: 139168.CrossRefGoogle Scholar
Hill, W. G. and Land, R. B. 1976. Superovulation and ovum transplantation in genetic improvement programmes. In Egg Transfer in Cattle (ed. Rowson, L. E. A.), pp. 355368. Commission of the European Communities, Luxembourg.Google Scholar
Hooper, M., Hardy, K., Handyside, A., Hunter, S. and Monk, M. 1987. HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonisation by cultured cells. Nature, London 326: 292295.CrossRefGoogle ScholarPubMed
Huizinga, H. A., Korver, S., McDaniel, B. T. and Politiek, R. D. 1986. Maternal effects due to cytoplasmic inheritance in dairy cattle: influence on milk production and reproduction traits. Livestock Production Science 15: 1126.CrossRefGoogle Scholar
Hunter, R. H. F. 1984. Towards 100% fertilisation in inseminated cows, with particular reference to the site of sperm storage. Animal Breeding Abstracts 52: 13.Google Scholar
Jones, K. W., Singh, L. and Edwards, R. G. 1987. The use of probes for the Y chromosome in preimplantation embryo cells. Human Reproduction 2: 439445.CrossRefGoogle Scholar
Jonmundsson, J. V. and Adalsteinsson, S. 1985. Single genes for fecundity in Icelandic sheep. In Genetics of Sheep Reproduction (ed. Land, R. B. and Robinson, D. W.), pp. 159168. Butterworths, London.CrossRefGoogle Scholar
Kennedy, B. W. 1986. A further look at evidence for cytoplasmic inheritance of production traits in dairy cattle. Journal of Dairy Science 69: 31003103.CrossRefGoogle Scholar
Kennedy, B. W. and Schaeffer, L. R. 1988. Reproductive technology and genetic evaluation. In Advances in Statistical Methods for Genetic Improvement of Livestock (ed. Gionola, D. and Hammond, K.). Springer Verlag. In press.Google Scholar
Kuehn, M. R., Bradley, A., Robertson, E. and Evans, M. J. 1987. A potential animal model for Lesch-Nyhan syndrome through introduction of HPRT mutations in mice. Nature, London 326: 295298.CrossRefGoogle Scholar
Lambert, R. D., Sirard, M. A., Bernard, C., Beland, R., Rioux, J. E., Leclerc, P., Menard, D. P. and Bedoya, M. 1986. In-vitro fertilization of bovine oocytes matured in vivo and collected by laparoscopy. Theriogenology 25: 117133.CrossRefGoogle Scholar
Land, R. B. and Hill, W. G. 1975. The possible use of superovulation and embryo transfer in cattle to increase response to selection. Animal Production 21: 112.Google Scholar
Lawson, R. A. S., Rowson, L. E. A. and Adams, C. E. 1972. The development of cow eggs in the rabbit oviduct and their viability after re-transfer to heifers. Journal of Reproduction and Fertility 28: 313315.CrossRefGoogle ScholarPubMed
Leibo, S. P. 1988. Preservation of embryos. Proceedings of 11th International Congress on Animal Reproduction and Artificial Insemination, Dublin, Vol. 5, pp. 370377.Google Scholar
Leibo, S. P. and Rall, W. F. 1987. Increase in production of pregnancies by bisection of bovine embryos. Theriogenology 27: 245 (Abstr.).Google Scholar
Lovell-Badge, R. H. 1987. Introduction of DNA into embryonic stem cells. In Teratocarcinomas and Embryonic Stem Cells: a Practical Approach (ed. Robertson, E. J.), pp. 153182. IRL Press, Oxford.Google Scholar
Lu, K. H., Gordon, I., Gallagher, M. and McGovern, H. 1987. Pregnancy established in cattle by transfer of embryos derived from in vitro fertilisation of oocytes matured in vitro. Veterinary Record 121: 259260.CrossRefGoogle ScholarPubMed
Lu, K. H., Gordon, I., McGovern, H. and Gallagher, M. 1988. Production of cattle embryos by in vitro maturation and fertilisation of follicular oocytes and their subsequent culture in vivo in sheep. Theriogenology 29: 272 (Abstr.).CrossRefGoogle Scholar
McDaniel, B. T. and Cassell, B. G. 1981. Effects of embryo transfer on genetic change in dairy cattle. Journal of Dairy Science 64: 24842492.CrossRefGoogle Scholar
McGuirk, B. 1989. The role of MOET schemes in developing countries. Theriogenology. In press.Google Scholar
Mauleon, P., Marina, J.-C., Benoit, M., Solari, A. and Chupin, D. 1970. Influence de differentes doses de PMSG et HCG, injectes en phase folliculaire du cycle oestrien sur le nombre et le rendement d'ovulations de vaches de race Francaise Frisonne Pie Noire. Annales de Biologie Animate, Biochimie et Biophysique 10: Suppl. I, 3146.CrossRefGoogle Scholar
Meat and Livestock Commission. 1988. Corporate Plan 1988–1991, p. 5. Meat and Livestock Commission, Bletchley.Google Scholar
Menissier, F. 1982. General survey of the effect of double muscling on cattle performance. In Muscle Hypertrophy of Genetic Origin and Its Use to Improve Beef Production (ed. King, J. W. B. and Menissier, F.), pp. 2353. Martinus Nijhoff, The Hague.CrossRefGoogle Scholar
Newcomb, R. 1979. Surgical and non-surgical transfer of bovine embryos. Veterinary Record 105: 432434.CrossRefGoogle ScholarPubMed
Newcomb, R. 1982. Egg recovery and transfer in cattle. In Mammalian Egg Transfer (ed. Adams, C. E.), pp. 81118. CRC Press, Boca Raton, Florida.Google Scholar
Newcomb, R., Christie, W. R. and Rowson, L. E. A. 1978. The non-surgical recovery and transfer of bovine embryos. In Control of Reproduction in the Cow (ed. Sreenan, J. M.), pp. 292304. Martinus Nijhoff, The Hague.CrossRefGoogle Scholar
Nicholas, F. and Smith, C. 1983. Increased rates of genetic change in dairy cattle by embryo traansfer and splitting. Animal Production 36: 341353.Google Scholar
Ornitz, D. M., Palmiter, R. D., Hammer, R. E., Brinster, R. L., Swift, G. H. and MacDonald, R. J. 1985. Specific expression of an elastase-human growth hormone fusion gene in pancreatic acinar cells of transgenic mice. Nature, London 313: 600603.CrossRefGoogle ScholarPubMed
Palmiter, R. D. and Brinster, R. L. 1986. Germline transformation of mice. Annual Review of Genetics 20: 465499.CrossRefGoogle ScholarPubMed
Palmiter, R. D., Brinster, R. L., Hammer, R. E., Trumbauer, M. E., Rosenfeld, M. G., Birnberg, N. C. and Evans, R. M. 1982. Dramatic growth of mice that develop from eggs microinjected with matallothionein-growth hormone fusion genes. Nature, London 300: 611615.CrossRefGoogle ScholarPubMed
Parrish, J. J., Susko-Parrish, J. L., Leibfried-Rutledge, M. L., Critser, E. S., Eyestone, W. H. and First, N. L. 1986. Bovine in vitro fertilisation with frozen-thawed semen. Theriogenology 25: 591600.CrossRefGoogle ScholarPubMed
Parrish, J. J., Susko-Parish, J. L., Winer, M. A. and First, N. L. 1988. Capacitation of bovine sperm by heparin. Biology of Reproduction 38: 11711180.CrossRefGoogle ScholarPubMed
Piedrahita, J. A., Anderson, G. B., Martin, G. R., Bondurant, R. H. and Pashen, R. L. 1988. Isolation of embryonic stem cell-like colonies from porcine embryos. Theriogenology 29: 286 (Abstr.).CrossRefGoogle Scholar
Piper, L. R. and Bindon, B. M. 1985. The single gene inheritance of the high litter size of the Booroola Merino. In Genetics of Reproduction in Sheep (ed. Land, R. B. and Robinson, D. W.), pp. 115125. Butterworths, London.CrossRefGoogle Scholar
Pursel, V. G., Miller, K. F., Bolt, D. J., Hammer, R. E., Palmiter, R. D. and Brinster, R. L. 1988. Insertion of growth hormone genes into pig embryos. International Symposium on Biotechnology in Growth Regulation. Butterworths, London. In Press.Google Scholar
Pursel, V. G., Miller, K. F., Pinhert, C. A., Palmiter, R. D., and Brinster, R. L. 1988. Effect of ovum cleavage stage at micromanipulation on embryonic survival and gene integration in pigs. Proceedings of 11th International Congress on Animal Reproduction and Artificial Insemination, Dublin, Vol. 4, p. 480.Google Scholar
Rajakoski, E. 1960. The ovarian follicular system in sexually mature heifers with special reference to seasonal, cyclical and left-right variations. Ada Endocrinologica, Suppl. 52.Google Scholar
Rall, W. F. and Fahy, G. M. 1985. Ice-free cryopreservation of mouse embryos at — 19°C by vitrification. Nature, London 313: 573575.CrossRefGoogle Scholar
Rall, W. F., Wood, M. J., Kirby, C. and Whittingham, D. G. 1987. Development of mouse embryos cryopreserved by vitrification. Journal of Reproduction and Fertility 80: 499504.CrossRefGoogle ScholarPubMed
Renard, J. P., Heyman, Y. and Ozil, J. P. 1982. Congelation de l'embryon bovin. Une nouvelle method de decogelation pour le transfert cervical d'embryons conditionnes une seule fois en paillettes. Annales de Medecine Veterinaire 126: 2332.Google Scholar
Rexroad, C. E. and Pursel, V. G. 1988. Status of gene transfer in domestic animals. Proceedings of 11th International Congress on Animal Reproduction and Artificial Insemination, Dublin, Vol. 5, pp. 2835.Google Scholar
Roberts, R. C. and Smith, C. 1982. Genes with large effects — theoretical aspects in livestock breeding. Proceedings of 2nd World Congress on Genetics Applied to Livestock Production, Madrid, Vol. 6, pp. 420438.Google Scholar
Rossant, J. 1976. Post-implantation development of blastomeres isolated from 4- and 8-cell mouse eggs. Journal of Embryology and Experimental Morphology 36: 283290.Google Scholar
Rowe, R. F., Del campo, M. R., Critser, J. K. and Ginther, O. I. 1980. Embryo transfer in cattle: nonsurgical transfer. American Journal of Veterinary Research 41: 10241028.Google ScholarPubMed
Rowson, L. E. A., Moor, R. M. and Lawson, R. A. S. 1969. Fertility following egg transfer in the cow: effect of method, medium and synchronisation of oestrus. Journal of Reproduction and Fertility 18: 517523.CrossRefGoogle ScholarPubMed
Ruane, J. 1988. Review of the use of embryo transfer i n the genetic improvement of dairy cattle. Animal Breeding Abstracts 56: 437446.Google Scholar
Saumande, J., Chupin, D., Mariana, J. C., Ortavant, R. and Mauleon, P. 1978. Factors affecting the variability of ovulation rates after PMSG stimulation. In Control of Reproduction in the Cow (ed. Sreenan, J. M.), pp. 195224. Martinus Nijhoff, The Hague.CrossRefGoogle Scholar
Schams, D., Menzer, CH., Schallenberger, E., Hoffmann, B., Hahn, J. and Hahn, R. 1978. Some studies on pregnant mare serum gonadotrophin (PMSG) and on endocrine responses after application for superovulation in cattle. In Control of Reproduction in the Cow (ed. Sreenan, J. M.), pp. 122143. Martinus Nijhoff, The Hague.CrossRefGoogle Scholar
Simons, J. P., McClenaghan, M. and Clark, A. J. 1987. Alteration of the quality of milk by expression of sheep B-lactoglobulin in transgenic mice. Nature, London 328: 530532.CrossRefGoogle Scholar
Simons, J. P., Wilmut, I., Clark, A. J., Archibald, A. L., Bishop, J. O. and Lathe, R. 1988. Gene transfer into sheep. Biotechnology 6: 179183.Google Scholar
Smith, C., Meuwissen, T. H. E. and Gibson, J. P. 1987. On the use of transgenes in livestock improvement. Animal Breeding Abstracts 55: 110.Google Scholar
Smith, L. C. and Wilmut, I. 1988. Factors influencing nuclear transplantation in sheep embryos. Journal of Reproduction and Fertility Abstracts 1: 10 (Abstr.).Google Scholar
Staigmiller, R. B. and Moor, R. M. 1984. Competence of ovine oocytes matured outside the follicle. Gamete Research 9: 221229.CrossRefGoogle Scholar
Swift, G. H., Hammer, R. E., MacDonald, R. J. and Brinster, R. L. 1984. Tissue specific expression of the rat elastase 1 gene in transgenic mice. Cell, USA 38: 639646.CrossRefGoogle Scholar
Theissen, R. B. and Rollins, W. C. 1982. A comparison of normal and heterozygous animals for double muscling in British breeds of cattle. In Muscle Hypertrophy of Genetic Origin and Its Use to Improve Beef Production (ed. King, J. W. B. and Menissier, F.), pp. 5469. Martinus Nijhoff, The Hague.CrossRefGoogle Scholar
Thomas, K. R. and Capecchi, M. R. 1987. Stem cells. Cell, USA 51: 503512.CrossRefGoogle ScholarPubMed
Trounson, A. O., Willadsen, S. M., Rowson, L. E. A. and Newcomb, R. 1976. The storage of cow eggs at room temperature and at low temperature. Journal of Reproduction and Fertility 46: 173178.CrossRefGoogle Scholar
Van Vleck, L. D. 1981. Potential genetic impact of artificial insemination, sex selection, embryo transfer, cloning and selfing in dairy cattle. In New Technologies in Animal Breeding (ed. Seidel, B. G. and Seidel, S. M.), pp. 221242. Academic Press, London.Google Scholar
Wagner, T. E. 1985. The role of gene transfer in animal agriculture and biotechnology. Canadian Journal of Animal Science 65: 539552.CrossRefGoogle Scholar
Wall, R. J., Pursel, V. G., Hammer, R. E. and Brinster, R. L. 1985. Development of porcine ova that were centrifuged to permit visualization of pronuclei and nuclei. Biology of Reproduction 32: 645651.CrossRefGoogle ScholarPubMed
Webb, A. J., Southwood, O. I. and Simpson, P. 1987. The halothane test in improving meat quality. In Control of Meat Quality (ed. Tarrent, P. V., Eikelenbloom, G. and Monin, G.), pp. 297315. Martinus Nijhoff, The Hague.Google Scholar
Wilkie, T. M., Brinster, R. L. and Palmiter, R. D. 1986. Germline and somatic mosaicism in transgenic mice. Developmental Biology 118: 918.CrossRefGoogle ScholarPubMed
Willadsen, S. M. 1982. Micromanipulation of embryos of the large domestic species. In Mammalian Egg Transfer (ed. Adams, C. E.), pp. 185210. CRC Press, Boca Raton, Florida.Google Scholar
Willadsen, S. M. 1986. Nuclear transplantation in sheep embryos. Nature, London 320: 6365.CrossRefGoogle ScholarPubMed
Wilmut, I. 1986. Crypreservation of mammalian eggs and embryos. In Manipulation of Mammalian Development (ed. Gwatkin, R. B. L.), pp. 217247. Plenum Press, New York.CrossRefGoogle Scholar
Wilmut, I. and Rowson, L. E. A. 1973. Experiments on the low temperature preservation of cow embryos. Veterinary Record 92: 686690.CrossRefGoogle ScholarPubMed
Wilmut, I. and Smith, L. C. 1988. Biotechnology and the bovine embryo: at present and in the future. In Proceedings of the 4th Scientific Meeting of European Embryo Transfer Association (ed. Thibier, M.), pp. 1931. Fondation Marcel Merieux, Lyons.Google Scholar
Woolliams, J. A. 1989a. The value of cloning in MOET nucleus breeding schemes for dairy cattle. Animal Production 48: 3135.CrossRefGoogle Scholar
Woolliams, J. A. 1989b. Modifications to MOET nucleus schemes to improve rates of genetic progress and decrease rates of inbreeding in dairy cattle. Animal Production. In press.Google Scholar
Woolliams, J. A. and Smith, C. 1988. The value of indicator traits in the genetic improvement of dairy cattle. Animal Production 46: 333345.CrossRefGoogle Scholar
Wright, S. 1931. Evolution in Mendelian populations. Genetics, USA 16: 97159.CrossRefGoogle ScholarPubMed