Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T13:25:04.620Z Has data issue: false hasContentIssue false

Electrocardiogram parameters of piglets during housing, handling and transport

Published online by Cambridge University Press:  02 September 2010

H. Villé
Affiliation:
Catholic University Leuven, Laboratory for Agricultural Buildings Research, Kard. Mercierlaan 92, B-3001 Heverlee, Belgium
S. Bertels
Affiliation:
Catholic University Leuven, Laboratory for Agricultural Buildings Research, Kard. Mercierlaan 92, B-3001 Heverlee, Belgium
R. Geers
Affiliation:
Catholic University Leuven, Laboratory for Agricultural Buildings Research, Kard. Mercierlaan 92, B-3001 Heverlee, Belgium
S. Janssens
Affiliation:
Catholic University Leuven, Laboratory for Agricultural Buildings Research, Kard. Mercierlaan 92, B-3001 Heverlee, Belgium
V. Goedseels
Affiliation:
Catholic University Leuven, Laboratory for Agricultural Buildings Research, Kard. Mercierlaan 92, B-3001 Heverlee, Belgium
G. Parduyns
Affiliation:
Catholic University Leuven, Laboratory for Agricultural Buildings Research, Kard. Mercierlaan 92, B-3001 Heverlee, Belgium
J. van Bael
Affiliation:
Catholic University Leuven, Laboratory for Agricultural Buildings Research, Kard. Mercierlaan 92, B-3001 Heverlee, Belgium
K. Goossens
Affiliation:
Catholic University Leuven, Laboratory for Agricultural Buildings Research, Kard. Mercierlaan 92, B-3001 Heverlee, Belgium
L. Bosschaerts
Affiliation:
Seghers Hybrid NV, Buggenhout, Belgium
J. de Ley
Affiliation:
Seghers Hybrid NV, Buggenhout, Belgium
L. Heylen
Affiliation:
Seghers Hybrid NV, Buggenhout, Belgium
Get access

Abstract

Telemetric techniques for the monitoring of physiological parameters during housing, handling and transport may help producers to reduce mortality and improve meat quality. In order to know the reliability of electrocardiogram parameters as stress indicators, piglets (12 to 23 kg) being different with respect to the halothane gene (homozygous halothane sensitive (nn) and non-sensitive (NN), heterozygotes (nN)), and thus different with respect to stress susceptibility, were monitored with an ambulatory ECG device during housing, handling and transport. Skeletal muscularity of all animals was measured with an ultrasound device.

Heterozygotes and homozygote halothane sensitive piglets had a higher muscularity, but only the homozygotes had a higher ST-elevation from the isoelectric line of the QRST-complex of the electrocardiogram when measured within housing conditions. This means a different propagation of the electric current related to the activation of the ventricle. Halothane gene carriers (Nn and nn piglets) had a statistically significant higher mean maximal heart rate during housing conditions. During handling heart rate rose by 14·8%, 0·61% and 42·9% respectively for NN, nN and nn piglets, with nn piglets having the highest values. During transport these measurements were respectively 6·88%, 3·66% and 9·7% higher for lines NN, nN and nn as compared with those in housing conditions. Heart arrhythmicity parameters were not different between housing and transport, but during handling up to a 23-fold increase could be observed.

Heart rate and arrhythmicity parameters may generate reliable information to monitor stress during housing, handling and transport of piglets through genotypes and skeletal muscularity.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Augustini, C. 1976. EKG- und koerpertemperatur-messungen an schweinen waehrend der mast und auf dem transport. Die Fleischwirtschaft 8:11331137.Google Scholar
Augustini, C. and Fischer, K. 1985. Physiological reaction of slaughter animals during transport. In Evaluation and control of meat quality in pigs (ed. Tarrant, P. V., Eikelenboom, G. and Monin, G.), pp. 437446. Martinus Nijhoff, Dordrecht.Google Scholar
Balady, G. J., Cadigen, J. B. and Ryan, T. R. 1984. Electrocardiogram of the athlete: an analysis of 289 professional football players. American Journal of Cardiology 53: 13391343.CrossRefGoogle ScholarPubMed
Bohn, F. K. and Henner, S. 1968. Elektrokardiographische untersuchungen bei miniaturschweinen. Zeitschrift fur die gesamte experimented Medizin 145: 356358.Google Scholar
Coulter, D. B. and Swenson, M. J. 1970. Effects of potassium intoxication on porcine electrocardiograms. American Journal of Veterinary Science 31:20012011.Google ScholarPubMed
Dammrich, K. 1987. Organ change and damage during stress. Morphological diagnosis. In Biology of stress in farm animals (ed. Wiepkema, P. R. and Van Adrichem, P. W. M.), pp. 7182. Martinus Nijhoff, Dordrecht.CrossRefGoogle Scholar
Douglas, P. S., O'Toole, M. L., Hackney, K. and Reichek, N. 1988. Electrocardiographic diagnosis of exercise-induced left ventricular hypertrophy. American Heart Journal 116: 784790.CrossRefGoogle ScholarPubMed
Dukes, T. W. and Szabuniewicz, M. 1969. The electrocardiogram of conventional and miniature swine. Canadian Journal of Comparative Medicine 33:118127.Google ScholarPubMed
Ellestad, M. H. 1987. In Stress testing (ed. Davies, F. A.). Philadelphia.Google Scholar
Engelhardt, W. V. 1963. Untersuchungen am schwein ueber die systolen- und diastolendauer des herzens und ueber den blutdruck in der ruhe und waehrend der erholung nach koerperlicher belastung. Zentralblatt fuer Veterinaermedizin A 10: 3950.CrossRefGoogle Scholar
Foster, P. S., Gesini, E., Claudianos, C., Hopkinson, K. C. and Denborough, M. A. 1989. Inositol 1, 4, 5,-triphosphate phosphatase deficiency and malignant hyperpyrexia in swine. The Lancet 2: (8655), 124127.CrossRefGoogle ScholarPubMed
Freund, R. J. and Littell, R. C. 1981. SAS for linear models. SAS Institute, Cary.Google Scholar
Fujii, J., Otsu, K., Zorzato, F., De Leon, S., Khanna, V. K., Weiler, J. E., O'Brien, P. J. and MacLennan, D. H. 1991. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science, Washington 253:448451.CrossRefGoogle ScholarPubMed
Geers, R., Goedseels, V., Parduyns, G., Nijns, P., Wouters, P. and Bosschaerts, L. 1990a. Integrated control of air and floor temperature in piglet houses: animal and engineering aspects. Annales de Zootechnie 39:1925.CrossRefGoogle Scholar
Geers, R., Parduyns, G., Goedseels, V., Bosschaerts, L. and Deley, J. 1990b. Skeletal muscularity and heart function in growing piglets. Annales Recherches Veterinaire 21: 231236.Google ScholarPubMed
Geers, R., Decanniere, C., Villé, H., Hecke, P. van, Goedseels, V., Vanstapel, F., Bosschaerts, L., Deley, J., Zhang, W. and Janssens, S. 1992. In vivo muscle 31P NMR spectroscopy during treatment of halothane-sensitive and halothane-nonsensitive pigs. American Journal of Veterinary Research 53: 613616.CrossRefGoogle ScholarPubMed
Goedseels, V., Geers, R., Puers, B., Teunon, I., Eichinger, G. and Bosschaerts, L. 1990. Animal monitoring and identification. Agrarinformatik 20: 6366.Google Scholar
Grande, F. and Taylor, H. L. 1965. Adaptive changes in the heart, vessels and patterns of control under chronically high loads. In Handbook of physiology: circulation, pp. 26152677. American Physiological Society, Washington DC.Google Scholar
Hansen, L. L., Hagelse, A. M., Northeved, A., Nilsson, O., Jensen, P. and Staun, H. 1983. Electronic identification and monitoring of behavioural, physiological and performance criteria as an aid to control future pig and cattle production and to secure animal welfare. Proceedings of Automation in Dairying, Pudoc, Wageningen.Google Scholar
Heinze, P. H. and Mitchell, G. 1989. Stress resistant and stress susceptible Landrace pigs: comparison of blood variables after exposure to halothane or exercise on a treadmill. Veterinary Record 124:163168.CrossRefGoogle ScholarPubMed
Lampo, P. 1978. Stress susceptibility of pigs: a review. Vlaams Diergeneeskundig Tijdschrift 56: 7788.Google Scholar
Larks, S. D., Wescott, R. B. and Larks, G. G. 1971. Electrocardiographic studies of miniature swine: normal values. Laboratory Animal Science 21: 553557.Google ScholarPubMed
Lister, D. 1987. The physiology and biochemistry of the porcine stress syndrome. In Evaluation and control of meat quality in pigs (ed. Tarrant, P. V., Eikelenboom, G. and Monin, G.), pp. 437446. Martinus Nijhoff, Dordrecht.Google Scholar
Marshall, M., Kott, H. and Hess, H. 1977. EKG- und pulskurvenanalysen beim Hanford-Miniaturschwein. Zentralblatt fuer Veterinaermedizin A 24: 380386.CrossRefGoogle Scholar
Peronnet, F., Perrault, H., Cleraux, J., Cousineau, D., Nadeau, R., Pham-Huy, H., Trembloy, G. and Lebeau, R. 1980. Electro- and echocardiographic study of the left ventricle in man after training. European Journal of Applied Physiology Occupational Physiology 45:125130.CrossRefGoogle ScholarPubMed
Pohlann, R., Schemel, D. and Lyhs, L. 1989. Maligne hyperthermie halothansensitiver schweine nach maximaler neuromotorischer belastung. Archiv fuer experimented Veterinaermedizin 38: 302310.Google Scholar
Spoerri, H. 1954. Untersuchungen ueber die systolen- und diastolendauer des herzens bei den verschiedenen haustierarten und ihre bedeutung fuer die klinik und beurteilungslehre. Schiueizer Archiv fuer Tierheilkunde 96: 593604.Google Scholar
Szulc, K. 1981. The influence of noise on electrocardiogram of fattening pigs. Medycyna Weterynaryjna 36: 557559.Google Scholar
Thielscher, H. H. 1969. Elektrokardiographisch untersuchungen an Deutschen veredelten landschweinen der landeszucht und der herdbuchzucht. Zentralblatt fuer Veterinaermedizin A 10: 370383.Google Scholar
Webb, A. J. and Jordan, C. H. C. 1978. Halothane sensitivity as a field test for stress susceptibility in the pig. Animal Production 26: 157168.Google Scholar