Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T00:14:47.091Z Has data issue: false hasContentIssue false

Effects of monensin and yeast supplementation on blood acid-base balance in finishing feedlot steers fed a high-grain, high-protein diet

Published online by Cambridge University Press:  09 March 2007

C. Castillo*
Affiliation:
Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Santiago de Compostela, Spain.
J. Hernández
Affiliation:
Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Santiago de Compostela, Spain.
J. Méndez
Affiliation:
Departamento Técnico de COREN, SCL, Orense, Spain
P. García-Partida
Affiliation:
Departamento de Patología Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Spain
V. Pereira
Affiliation:
Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Santiago de Compostela, Spain.
P. Vázquez
Affiliation:
Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Santiago de Compostela, Spain.
M. López Alonso
Affiliation:
Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Santiago de Compostela, Spain.
J. L. Benedito
Affiliation:
Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Santiago de Compostela, Spain.
*
Get access

Abstract

The aim of this study was to evaluate the effects of two dietary supplements (monensin and a live yeast culture) on acid-base balance in steers maintained in a commercial feedlot system, considering effects over the finishing productive cycle. Steers (no. =42) were allotted randomly to one of the three study groups: (1) control group (no supplementation, C), (2) monensin supplementation (MON), and (3) live Saccharomyces cerevisiae strain 47 supplementation (SACC). Venous blood samples were collected for the measurement of acid-base parameters and l-lactate. Production parameters were also used as a complementary tool for understanding the internal changes associated with supplementation. During the finishing period, MON steers tended to gain more efficiently than C and SACC steers. In the C group, the finishing-period diet caused a progressive decline in blood bases, in line with the high-grain diet consumption. In contrast, supplemented animals did not show this trend, although lower HCO3 and base excess values were registered in SACC steers than in MON, indicating that ionophore supplementation is less effective for reducing blood base consumption than yeast supplementation. In our study, the lack of the expected response to yeast supplementation may be attributable to the high crude protein content of the ration, a common feature of commercial feedlot industries.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bayley, C. R. and Duff, G. C. 2005. Protein requirements for finishing beef cattle, http://animal.cals.arizona.edu/swnmc/papers/2005/ Accessed 1 March, 2006.Google Scholar
Beauchemin, K. A., Yang, W. Z., Morgavi, D. P., Ghorbani, G. R., Kautz, W. and Leedle, J. A. Z. 2003. Effects of bacterial direct-fed microbials and yeast on site and extent of digestion, blood chemistry and subclinical ruminal acidosis in feedlot cattle. Journal of Animal Science 81: 16281640.CrossRefGoogle ScholarPubMed
Brown, M. S., Galyean, M. L., Duff, G. C., Hallford, D. M. and Soto-Navarro, S. A. 1998. Effects of degree of processing and nitrogen source and level of starch availability and in vitro fermentation of corn and sorghum grain. The Professional Animal Scientist 14: 8394.CrossRefGoogle Scholar
Brown, M. S., Krehbiel, C. R., Galyean, M. L., Remmengas, M. D., Peters, J. P., Hibbard, B., Robinson, J. and Moseley, W. M. 2000. Evaluation of models of acute and subacute acidosis on dry matter intake, ruminal fermentation, blood chemistry, and endocrine profiles in beef steers. Journal of Animal Science 78: 31553168.CrossRefGoogle ScholarPubMed
Callaway, E. S. and Martin, S. A. 1997. Effects of Saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate and digest cellulose. Journal of Dairy Science 80: 20352044.CrossRefGoogle ScholarPubMed
Cambier, C., Clerabux, T., Detry, B., Beerens, D., Frans, A. and Gustin, P. 2000. Blood oxygen binding in double muscled calves and dairy calves with conventional muscle conformation. American Journal of Veterinary Research 61: 299304.CrossRefGoogle ScholarPubMed
Castillo, C., Benedito, J. L., Méndez, J., Pereira, V., López-Alonso, M., Miranda, M. and Hernández, J. 2004. Organic acids as a substitute for monensin in diets for feedlot cattle. Animal Feed Science and Technology 115: 101116.CrossRefGoogle Scholar
Castillo, C., Hernández, J., Méndez, J., Llena, J., Pereira, V., López-Alonso, M. and Benedito, J. L. 2006. Influence of grain processing on acid-base balance in feedlot steers. Veterinary Research Communications (In press).CrossRefGoogle Scholar
Clary, E. M., Brandt, R. T. Jr., Harmon, D. L. and Nagaraja, T. G. 1993. Supplemental fat and ionophores in finishing diets: feedlot performance and ruminal digesta kinetics in steers. Journal of Animal Science 71: 31153123.CrossRefGoogle ScholarPubMed
Czerkawski, J. W. and Clapperton, J. L. 1984. Fats as energy-yielding compounds in the ruminant diet. In Fats in animal nutrition (ed. Wiseman, J.), pp. 249264. Butterworths, Boston.CrossRefGoogle Scholar
Dawson, K. A. 2003. Manipulating rumen microbial population to improve animal productivity. http://www.adus.usu.edu/pdf/manipulatingRumenMicrobial.pdfAccessed 3 Sept. 2004.Google Scholar
Duff, G. C., Galyean, M. L., Branine, M. E. and Hallford, D. M. 1994. Effects of lasalocid and monensin plus tylosin on serum metabolic hormones and clinical chemistry profiles of beef steers fed a 90% concentrate diet. Journal of Animal Science 72: 10491058.CrossRefGoogle ScholarPubMed
Erickson, P. S., Davis, M. L., Murdock, C. S., Pastir, K. E., Murphy, M. R., Schwab, C. G. and Marden, J. I. 2004. Ionophore taste preference of dairy heifers. Journal of Animal Science 82: 33143320.CrossRefGoogle ScholarPubMed
European Commission (Health and Consumer Protection Directorate General). 2002. Evaluation of the efficacy of micro-organism product Biosaf, SC47. http://europa.eu.int/comm/food/fs/sc/scan/out101_en.pdf Accessed 20 March, 2006.Google Scholar
Goad, D. W., Goad, C. L. and Nagaraja, T. G. 1998. Ruminal microbial and fermentative changes associated with experimentally induced subacute acidosis in steers. Journal of Animal Science 76: 234241.CrossRefGoogle ScholarPubMed
Greene, L. W., Schelling, G. T. and Byers, F. M. 1986. Effects of dietary monensin and potassium on apparent absorption of magnesium and other macroelements in sheep. Journal of Animal Science 63: 19601967.CrossRefGoogle ScholarPubMed
Lana, R. P., Fox, D. G., Russell, J. B. and Perry, T. C. 1997. Influence of monensin on Holstein steers fed high-concentrate diets containing soybean meal or urea. Journal of Animal Science 75: 25712579.CrossRefGoogle ScholarPubMed
Lynch, H. A. and Martin, S. A. 2002. Effects of Saccharomyces cerevisiae culture and Saccharomyces cerevisiae live cells on in vitro mixed ruminal microorganism fermentation. Journal of Dairy Science 85: 26032608.CrossRefGoogle ScholarPubMed
Montaño, M. F., Chai, W., Zinn-Ware, T. E. and Zinn, R. A. 1999. Influence of malic acid supplementation on ruminal pH, lactic acid utilization, and digestive function in steers fed high-concentrate finishing diets. Journal of Animal Science 77: 780784.CrossRefGoogle ScholarPubMed
National Research Council. 2000. Nutrient requirements of beef cattle, seventh revised edition. National Academy of Sciences, Washington.Google Scholar
Owens, F. N., Secrist, D. S., Hill, W. J. and Gill, D. R. 1998. Acidosis in cattle: a review. Journal of Animal Science 76: 275286.CrossRefGoogle ScholarPubMed
Radostits, O. M., Gay, C. C., Blood, D. C. and Hinchcliff, K. W. 2000. Veterinary medicine: a textbook of the diseases of cattle, sheep, pig, goats and horses. W.B. Saunders Company Ltd, London.Google Scholar
Starnes, S. R., Spears, J. W., Froetschel, M. A., Croom, W. J. Jr. 1984. Influence of monensin and lasalocid on mineral metabolism and ruminal urease activity in steers. Journal of Nutrition 114: 518525.CrossRefGoogle ScholarPubMed
Statistical Packages for the Social Sciences. 2003. 12.1 computer program. SPSS Inc., Chicago, IL.Google Scholar
Swartz, D. L., Muller, L. D., Rogers, G. W. and Varga, G. A. 1994. Effect of yeast cultures on performance of lactating dairy cows: a field study. Journal of Dairy Science 77: 30733080.CrossRefGoogle ScholarPubMed
Yang, C.-M. J., Chang, C.-T., Huang, S. -C. and Chang, T. 2003. Effect of lasalocid on growth, blood gases, and nutrient utilization in dairy goats fed high forage, low protein diet. Journal of Dairy Science 86: 39673971.CrossRefGoogle ScholarPubMed
Yang, W. Z., Beauchemin, K. A., Vedres, D. D., Ghorbani, G. R., Colombatto, D. and Morgavi, D. P. 2004. Effects of direct-fed microbial supplementation on ruminal acidosis, digestibility, and bacterial protein synthesis in continuous culture. Animal Feed Sciences and Technology 114: 179193.CrossRefGoogle Scholar
Zinn, R. A. and Borques, J. L. 1993. Influence of sodium bicarbonate and monensin on utilization of a fat-supplemented, high-energy growing-finishing diet by feedlot steers. Journal of Animal Science 71: 1825.CrossRefGoogle ScholarPubMed
Zinn, R. A., Plasencia, A. and Barajas, R. 1994. Interaction of forage level and monensin in diets for feedlot cattle on growth performance and digestive function. Journal of Animal Science 72: 22092215.CrossRefGoogle ScholarPubMed