Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T19:01:01.791Z Has data issue: false hasContentIssue false

Effects of dietary carbohydrate composition on rumen fermentation, plasma hormones and metabolites in growing-fattening bulls

Published online by Cambridge University Press:  02 September 2010

C. van Eenaeme
Affiliation:
University of Liége, Veterinary Faculty, 45 rue des Vétérinaires, 1070 Bruxelles, Belgium
L. Istasse
Affiliation:
University of Liége, Veterinary Faculty, 45 rue des Vétérinaires, 1070 Bruxelles, Belgium
A. Gabriel
Affiliation:
University of Liége, Veterinary Faculty, 45 rue des Vétérinaires, 1070 Bruxelles, Belgium
A. Clinquart
Affiliation:
University of Liége, Veterinary Faculty, 45 rue des Vétérinaires, 1070 Bruxelles, Belgium
G. Maghuin-Rogister
Affiliation:
University of Liége, Veterinary Faculty, 45 rue des Vétérinaires, 1070 Bruxelles, Belgium
J. M. Bienfait
Affiliation:
University of Liége, Veterinary Faculty, 45 rue des Vétérinaires, 1070 Bruxelles, Belgium
Get access

Abstract

Two groups of six bulls were offered a fattening diet based on barley or sugar-beet pulp in the proportions of either 500: 200 g/kg or 200: 500 g/kg to compare the effects of starch and degradable fibre on rumen fermentations, plasma hormones and metabolites. The bulls were fed twice daily at 08.00 and 16.00 h.

The large proportion of sugar-beet pulp in the diet induced higher levels of acetic and butyric acids and less propionic acid than the high proportion of barley. The diurnal patterns over a 24-h period of rumen pH, volatile fatty acids, glucose and ammonia were characterized by two cycles. Sugar-beet pulp in large proportions induced more even fermentations as indicated by flatter curves with less extreme values than those produced by a large inclusion of barley in the diet. Ammonia concentration was high before feeding and decreased subsequently during 4 to 6 h after the meal.

No typical patterns were observed in plasma concentrations of glucose and alpha-amino nitrogen. Plasma urea concentration rose 2h after feeding and dropped during the following 6 to 8 h. There were no effects of dietary carbohydrate composition on growth hormone concentration but plasma insulin was significantly reduced with the diet high in sugar-beet pulp. Furthermore, the insulin profile showed peaks after each meal with the barley diet but only after the afternoon feeding with the diet high in sugar-beet pulp.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, P. T., Bergen, W. G., Merkel, R. A., Enright, W. J., Zinn, S. A., Refsal, K. R. and Hawkins, D. R. 1988. The relationship between composition of gain and circulating hormones in growing beef bulls fed three dietary crude protein levels. Journal of Animal Science 66: 30593067.Google Scholar
Bassett, J. M. 1972. Plasma glucagon concentrations in sheep: their regulation and relation to concentrations of insulin and growth hormone. Australian Journal of Biological Science 25: 12771287.CrossRefGoogle ScholarPubMed
Beeby, J. M, Haresign, W. and Swan, H. 1988. Endogenous hormone and metabolite concentrations in different breeds of beef steer on two systems of production. Animal Production 47: 231244.Google Scholar
Bhattacharya, A. N. and Alulu, M. 1975. Appetite and insulin-metabolite harmony in portal blood of sheep fed high or low roughage diet with or without intraruminal infusion of VFA. Journal of Animal Science 41: 225233.CrossRefGoogle ScholarPubMed
Briggs, P. K., Hogan, J. P. and Reid, R. L. 1957. The effect of volatile fatty acids, lactic acid, and ammonia on rumen pH in sheep. Australian Journal of Agricultural Research 8: 674690.Google Scholar
Charlier, C, Van eenaeme, C, Canart, B., Pondant, A., Lambot, O. and Bienfait, J. M. 1974. Methode de dosage semi-automatique de l';amidon et du glucose dans les aliments pour bétail. Annales de Medecine Vétérinaire 118: 181194.Google Scholar
Closset, J., Maghuin-rogister, G., MINH, TRAN QUANG, Lambot, O. and Hennen, G. 1986. Immunological growth promotion of bulls by synthetic vaccine inhibiting the endogenous somatostatin. Proceedings of the 32nd European Meeting of Meat Research Workers, Ghent.Google Scholar
Cordiez, E., Bienfait, J. M., Lambot, O. and Pondant, A. 1972. Le ravitaillement proteique des jeunes bovins en croissance-engraissement. In Livre Jubilaire Dédié au Prof. A. De Vuyst, pp. 666690. Editorial Garsi, Madrid.Google Scholar
Cordiez, E., Bienfait, J. M., Lambot, O. and Van eenaeme, C. 1965. Alimentation et production de viande bovine. Annales de Médecine Vétérinaire 109: 5087.Google Scholar
Fahmy, S. T. M., Lee, N. H. and Ørskov, E. R. 1984. Digestion and utilization of straw. 2. Effect of different supplements on the digestion of ammonia-treated straw. Animal Production 38: 7581.Google Scholar
Hart, I. C. 1983. Endocrine control of nutrient partition in lactating ruminants. Proceedings of the Nutrition Society 42: 181194.Google Scholar
Henry, R. J. 1974. Clinical Chemistry, Principles and Techniques, pp. 517518. Harper and Row, New York.Google Scholar
Hertelendy, F., MacHlin, L. and Kipnis, D. M. 1969. Further studies on the regulation of insulin and growth hormone secretion in the sheep. Endocrinology 84: 192199.Google Scholar
Istasse, L., Kameni Djiele, N., Rollin, F., Van eenaeme, C. and Bienfait, J. M. 1988. Composition et estimation de la valeur alimentaire par les techniques “in sacco” et “in vitro” de 2 sousproduits des amidonneries, l'amyfeed et le glutenfeed. Annales de Medecine Veterinaire 132: 219226.Google Scholar
Istasse, L., MacLeod, N. A., Goodall, E. D. and Ørskov, E. R. 1987. Effects on plasma insulin of intermittent infusions of propionic acid, glucose orcasein into the alimentary tract of non lactating cows maintained on a liquid diet. British Journal of Nutrition 58: 139148.CrossRefGoogle ScholarPubMed
Jarrige, R., Journet, M. and Verite, R. 1978. Azote. In Alimentation des Ruminants pp. 89128. Institut National de la Recherche Agronomique, Versailles.Google Scholar
Merriam, G. R. and Wachter, K. W. 1982. Algorithms for the study of episodic hormone secretion. American Journal of Physiology 243: E310E318.Google Scholar
Michaux, C., Beckers, J. F., De fonseca, M. and Hanset, R. 1981. Plasma insulin level in double-muscled and conventional bulls during the first year of life. Zeitschrift für Tierzüchtung und Züchtungsbiologie 98: 312318.CrossRefGoogle Scholar
Nathannielsz, P. W. 1970. Amino acid stimulation of insulin release in the newborn calf. Journal of Endocrinology 48: 141142.Google Scholar
Palmer, D. W. and Peters, J. T. 1969. Automated determination of free amino groups in serum and plasma using 2, 4, 6 trinitrobenzene sulfonate. Clinical Chemistry 19: 891901.Google Scholar
Preston, T. R. 1963. Barley beef production. Veterinary Research 75: 13991402.Google Scholar
Rommel, E., Evrard, P., Istasse, L., Van eenaeme, C., Maghuin-rogister, G. and Bienfait, J. M. 1987. Blood growth hormone and insulin profiles as influenced by fat supplementation in 2 monozygotic heifers. Proceedings of the 38th Annual Meeting of the European Association for Animal Production, Lisboa, Portugal, p. 414.Google Scholar
Satter, L. D. and Roffler, R. E. 1981. Influence of nitrogen and carbohydrate inputs on rumen fermentation. In Recent Developments in Ruminant Nutrition (ed. Haresign, W. and Cole, D. J. A.), pp. 115139. Butterworths, London.Google Scholar
Sutton, J. D. 1980. Digestion and end-product formation in the rumen from production rations. In Digestive Physiology and Metabolism in Ruminants (ed. Ruckebusch, Y. and Thivend, P.), pp. 271290. MTP Press, Lancaster.CrossRefGoogle Scholar
Sutton, J. D., Hart, I. C. and Brostkr, W. H. 1982. The effect of feeding frequency on energy metabolism in milking cows given low-roughage diets. In Energy-Metabolism of Farm Animals (ed. Ekern, A. and Sundstøl, F.), pp. 2629. Agricultural University of Norway, Aas-NLH.Google Scholar
Taylor, P. L. 1987. Munro. Hormone pulse. Profile analysis manual. Zaristov Software, Scotland.Google Scholar
Van eenaeme, C, Bienfait, J. M. and Lambot, O. 1965. La détermination quantitative des acides gras volatils dans le liquide du rumen par chromatographie en phase gazeuse. Annales de Médecine Vétérinaire 109: 569584.Google Scholar
Van eenaeme, C, Bienfait, J. M., Lambot, O. and Pondant, A. 1969. Détermination automatique de l'ammoniaque dans le liquide de rumen par la methode de Berthelot adaptée à I‘Auto-Analyzer. Annales de Médécine Veterinaires 113: 419429.Google Scholar
Wheaton, J. E., Al-raheem, S. M., Massri, Y. G. and Marcek, J. M. 1986. Twenty-four-hour growth hormone profiles in Angus steers. Journal of Animal Science 62: 12671272.Google Scholar