Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-24T02:40:51.416Z Has data issue: false hasContentIssue false

Effect of undernutrition and refeeding on digestion in Bos taurus and Bos indicus in a tropical environment

Published online by Cambridge University Press:  02 September 2010

P. Grimaud
Affiliation:
Centre International de Recherche-Développement sur l'Elevage en zone Subhumide, 01 BP 454 Bobo-Dioulasso, Burkina Faso Centre de Coopération Internationale en Recherche Agronomique pour le Développement/Département Elevage et Médecine Vétérinaire en pays Tropicaux, BP 5035, 34032 Montpellier, France
D. Richard
Affiliation:
Centre de Coopération Internationale en Recherche Agronomique pour le Développement/Département Elevage et Médecine Vétérinaire en pays Tropicaux, BP 5035, 34032 Montpellier, France
A. Kanwé
Affiliation:
Centre International de Recherche-Développement sur l'Elevage en zone Subhumide, 01 BP 454 Bobo-Dioulasso, Burkina Faso
C. Durier
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire de Biométrie, Route de St Cyr, 78026 Versailles, France
M. Doreau
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire Sous-Nutrition des Ruminants, Theix 63122 St Genès Champanelle, France
Get access

Abstract

The effect of underfeeding and ref eeding on digestion was studied in Bos taurus and Bos indicus cows. Eight nonlactating cows, four B. taurus and four B. indicus (live weight 156 kg and 207 kg respectively) were first given a forage-based diet at a level above energy maintenance requirements for 4 weeks (3·65 and 4·66 kg dry matter (DM) per day respectively for B. taurus and B. indicus). They were then restricted at a low level of intake for 2 months (1·83 and 2·33 kg DM per day respectively for B. taurus and B. indicus) and finally refed at the first level for 2 months. Digestion measurements were made before the underfeeding period, at 3 and 8 weeks of underfeeding and at 3 and 8 weeks ofref eeding. Organic matter apparent digestibility decreased with underfeeding and increased with refeeding (0·637, 0·591, 0·652, 0·692 and 0·669 in B. taurus and 0·674, 0·560, 0·580, 0·698 and 0·692 in B. indicus, respectively 1 week before, 3 and 8 weeks after underfeeding, and 3 and 8 weeks after refeeding). This lower apparent digestibility at low level of intake was not expected either by ruminal particle retention time, which increased when intake decreased, or by measurements ofmicrobial activity: DM degradability measured in situ and ruminal particle size did not vary with level of intake. An effect of the length of underfeeding and refeeding was seen: the apparent digestibility tended to increase after several weeks of undernutrition and was higher after refeeding than before underfeeding. No difference was observed between the two genotypes.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agabriel, J., Petit, M., Oilier, A. and Chilliard, Y. 1995. Effects of underfeeding on body reserves variations and on energy efficiency of lactating Charolais cows. Annales de Zootechnie 44: (supplement) 317.CrossRefGoogle Scholar
Aitchison, E. M., Gill, M. and Osbourn, D. F. 1986. The effect of supplementation with maize starch and level of intake of perennial ryegrass (Lolium perenne cv. Endura) hay on the removal of digesta from the rumen of sheep. British Journal of Nutrition 56: 477486.Google Scholar
Barnouin, J., El Idilbi, N., Chilliard, Y., Chacornac, J. P. and Lefaivre, R. 1986. Microdosage automatisé sans déprotéinisation du 3-hydroxybutyrate plasmatique chez les bovins. Annales de Recherches Vétérinaires 17: 129139.Google Scholar
Blincoe, C., Theisen, M. O. and Stoddard-Gilbert, K. 1987. Sample oxidation procedures for the determination of chromium and nickel in biological material. Communications in Soil Science and Plant Analysis 18: 687697.Google Scholar
Chilliard, Y., Doreau, M., Bocquier, F. and Lobley, G. E. 1995. Digestive and metabolic adaptations of ruminants to variations in food supply. In Recent developments in the nutrition of herbivores (ed. Journet, M., Grenet, E., Farce, M. H., Thériez, M. and Demarquilly, C.). Proceedings of the fourth international symposium on the nutrition of herbivores, pp. 329360. INRA Editions, Paris.Google Scholar
Dhanoa, M. S., Siddons, R. C., France, J. and Gale, D. L. 1985. A multicompartmental model to describe marker excretion patterns in ruminant faeces. British Journal of Nutrition 53: 663671.Google Scholar
Doreau, M., Lomri, A. I. and Adingra, A. 1986. Influence d'un faible niveau dingestion sur la digestion et le comportement alimentaire chez la vache recevant un régime trés digestible. Reproduction, Nutrition, Development 26: 329330.CrossRefGoogle Scholar
Duckworth, J. 1946. A statistical comparison of the influence of crude fibre on the digestibility of roughage by Bos indicus (Zebu) and Bos taurus cattle. Tropical Agriculture 23: 48.Google Scholar
Galina, C. S. and Arthur, G. H. 1989. Review of cattle reproduction in the tropics. 2. Parturition and calving intervals. Animal Breedings Abstracts 57: 679686.Google Scholar
Galyean, M. L. and Owens, F. N. 1991. Effects of diet composition and level of feed intake on site and extent of digestion in ruminants. In Physiological aspects of digestion and metabolism in ruminants (ed Tsuda, T., Sasaki, Y., Kawashima, R.). Proceedings of seventh symposium on ruminant physiology, pp. 483514. Academic Press, San Diego.CrossRefGoogle Scholar
Gingins, M., Bickel, H. and Schürch, A. 1980. Efficiency of energy utilization in undernourished and realimented sheep. Livestock Production Science 7: 465471.Google Scholar
Glenn, B. P., Varga, G. A., Huntington, G. B. and Waldo, D. R. 1989. Duodenal nutrient flow and digestibility in Holstein steers fed formaldehyde- and formic acid-treated alfalfa or orchardgrass silage at two intakes. Journal of Animal Science 67: 513528.Google Scholar
Goering, H. K. and Van Soest, P. J. 1970. Forage fiber analysis (apparatus, reagents, procedures, and some applications). Agricultural handbook no. 379. ARS-USDA, Washington, DC.Google Scholar
Grimaud, P. and Doreau, M. 1995. Effect of extended underfeeding on digestion and nitrogen balance in nonlactating cows. Journal of Animal Science 73: 211219.CrossRefGoogle ScholarPubMed
Hydén, S. 1955. A turbidimetric method for the determination of higher polyethylene glycols in biological materials. Kungliga Lantbrukshögskolans Annaler 22: 139145.Google Scholar
Institut National de la Recherche Agronomique. 1989. Ruminant nutrition: recommended allowances and feed tables. John Libbey Eurotext, Paris.Google Scholar
Kabré, P., Doreau, M. and Michalet-Doreau, B. 1995. Effects of underfeeding and of fish meal supplementation on forage digestion in sheep. Journal of Agricultural Science, Cambridge 124: 119127.CrossRefGoogle Scholar
Kabré, P., Martin, C. and Michalet-Doreau, B. 1994. Enzyme activities of rumen solid-adherent microorganisms in chronically underfed ewes. Journal of the Science of Food and Agriculture 65: 423428.Google Scholar
Keenan, D. M., McManus, W. R. and Freer, M. 1969. Changes in the body composition and efficiency of mature sheep during loss and regain of live weight. Journal of Agricultural Science, Cambridge 72: 139147.Google Scholar
Kennedy, P. M. 1982. Ruminal and intestinal digestion in Brahman crossbred and Hereford cattle fed alfalfa or tropical pasture hay. Journal of Animal Science 55: 11901198.Google Scholar
Luginbuhl, J. M., Pond, K. R. and Burns, J. C. 1994. Whole-tract digesta kinetics and comparison of techniques for the estimation of fecal output in steers fed coastal bermudagrass hay at four levels of intake. Journal of Animal Science 72: 201211.Google Scholar
McGraham, N. 1964. Energetic efficiency of fattening sheep. II. Effects of undernutrition. Australian Journal of Agricultural Research 15: 113126.Google Scholar
Nozière, P. and Michalet-Doreau, B. 1997. Validation of in sacco method: influence of sampling site, nylon bag or rumen contents, on fibrolytic activity of solid-associated microorganisms. Animal Feed Science and Technology 57: 203210.CrossRefGoogle Scholar
O'Donovan, P. B. 1984. Compensatory gain in cattle and sheep. Nutrition Abstracts and Reviews, B 54: 389410.Google Scholar
Okine, E. K. and Mathison, G. W. 1991. Effects of feed intake on particle distribution, passage of digesta and extent of digestion in the gastrointestinal tract of cattle. Journal of Animal Science 69: 34353445.CrossRefGoogle ScholarPubMed
Ortigues, I. and Vermorel, M. 1996. Adaptation of whole animal energy metabolism to undernutrition in ewes: influence of time and posture. Animal Science 63: 413422.CrossRefGoogle Scholar
Perrier, R. and Doreau, M. 1995. Effect of long-term underfeeding and subsequent refeeding on hay digestibility in sheep. Annales de Zootechnie 44: (supplement) 206.CrossRefGoogle Scholar
Phillips, G. D., Hungate, R. E., McGregor, A. and Hungate, D. P. 1960. Experiments on rumen retention time, fermentation rate and dry-matter digestibility in zebu and european-type cattle on a grass hay ration. Journal of Agricultural Science, Cambridge 54: 417420.Google Scholar
Schneider, B. H. and Flatt, W. P. 1975. The evaluation of feeds through digestibility experiments, pp. 226233. The University of Georgia Press, Athens.Google Scholar
Statistical Analysis Systems Institute. 1987. SAS/STAT user's guide: statistics, 6.03 edition. SAS Institute Inc., Cary, NC.Google Scholar
Thornton, R. F., Hood, R. L., Jones, P. N. and Re, V. M. 1979. Compensatory growth in sheep. Australian Journal of Agricultural Research 30: 135151.CrossRefGoogle Scholar
Tyrrell, H. F. and Moe, P. W. 1975. Effect of intake on digestive efficiency. Journal of Dairy Science 58: 11511159.CrossRefGoogle Scholar
Varga, G. A. and Prigge, E. C. 1982. Influence of forage genotypes and level of intake on ruminal turnover rates. Journal of Animal Science 55: 14981504.Google Scholar
Waldo, D. R., Smith, L. W., Cox, E. L., Weinland, B. T. and Lucas, Jr H. L. 1971. Logarithmic normal distribution for description of sieved forage materials. Journal of Dairy Science 10: 14651469.CrossRefGoogle Scholar