Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T16:46:40.409Z Has data issue: false hasContentIssue false

Effect of nucleotide supplementation on lymphocyte DNA damage induced by dietary oxidative stress in pigs

Published online by Cambridge University Press:  09 March 2007

J. Salobir*
Affiliation:
Institute of Nutrition, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
V. Rezar
Affiliation:
Institute of Nutrition, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
T. Pajk
Affiliation:
Institute of Nutrition, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
A. Levart
Affiliation:
Institute of Nutrition, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
*
Get access

Abstract

The aim of the present study was to evaluate the effect of nucleotide supplementation on the oxidative stress induced by a high proportion of dietary polyunsaturated fatty acids ( PUFAs) in pigs. Twenty-four male growing pigs were penned individually and after an adaptation period divided into three groups. All groups received isocaloric daily rations composed of a basal diet supplemented with either: starch (CONT), linseed oil (LIN) and LIN and nucleotides (LIN + NUC). The experimental period lasted 21 days. Oxidative stress was evaluated by measuring the degree of lymphocyte nuclear DNA damage, the urine malondialdehyde ( MDA) excretion rate, erythrocyte glutathione peroxidase concentration and the total anti-oxidant status of plasma. Malondialdehyde concentrations in the blood and MDA urinary excretion rates were higher (P < 0·01) in animals supplemented with LIN and LIN + NUC compared with CONT animals. The degree of DNA damage in the LIN-supplemented animals was also higher (P < 0·01). Compared with the LIN-supplemented animals, nucleotide supplementation reduced (P < 0·01) the degree of DNA damage in lymphocytes to the level of the CONT group. Erythrocyte glutathione peroxidase concentration and plasma total anti-oxidant status were similar across treatments. The results of this experiment indicate that nucleotide supplementation effectively eliminates the genotoxic effects of high PUFA intakes on blood lymphocytes and demonstrates new evidence for the immunonutritive effect of nucleotides.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnett, Y. A. and Barnett, C. R. 1998. DNA damage and mutation: contribution to the age-related alterations to T-cell mediated immune responses. Mechanism of Ageing and Development 102: 165175.CrossRefGoogle Scholar
Bastian, L. and Weimann, A. 2002. Immunonutrition in patients after multiple trauma. British Journal of Nutrition 87: S133–S134.CrossRefGoogle ScholarPubMed
Brennan, L. A., Morris, G. M., Wasson, G. R., Hannigan, M. and Barnett, Y. A. 2000. The effect of vitamin C or vitamin E supplementation on basal and H2O2-induced DNA damage in human lymphocytes. British Journal of Nutrition 84: 195202.CrossRefGoogle ScholarPubMed
Bub, A., Watzl, B., Blockhaus, M., Briviba, K., Liegibel, U., Müller, H., Pool-Zobel, B. L. and Rechkemmer, G. 2003. Fruit juice composition modulates antioxidative status, immune status and DNA damage. Journal of Nutritional Biochemistry 14: 9098.CrossRefGoogle Scholar
Cameron, B. F., Wong, C. W., Hinch, G. N., Singh, D., Nolan, J. V., Colditz, I. G. and Lindberg, J. E. 2001. Effects of nucleotides on the immune function of early-weaned piglets. In Digestive physiology in pigs (ed. Ogle, B.), pp. 6668. CAB International, Wallingford.Google Scholar
Carver, J. D. 1994. Dietary nucleotides: cellular immune, intestinal and hepatic system effects. Journal of Nutrition 124: 144S148S.CrossRefGoogle ScholarPubMed
Carver, J. D. 1999. Dietary nucleotides: effects on the immune and gastrointestinal systems. Acta Paediatrica 88: 8388.CrossRefGoogle ScholarPubMed
Carver, J. D., Sosa, R., Saste, M. and Kuchan, M. 2004. Dietary nucleotides and intestinal blood flow velocity in term infants. Journal of Pediatric Gastroenterology and Nutrition 39: 3842.Google ScholarPubMed
Chirico, S. 1994. High-performance liquid chromatography-based thiobarbituric acid tests. In Oxygen radicals in biological systems. Methods in enzymology (ed. Packer, L.), pp. 314318. Academic Press, San Diego.Google Scholar
Cordle, C. T., Winship, T. R., Schaller, J. P., Thomas, D. J., Buck, R. H., Ostrom, K. M., Jacobs, J. R., Blatter, M. M., Cho, S., Gooch, W. M. and Pickering, L. K. 2002. Immune status of infants fed soy-based formulas with or without added nucleotides for 1 year. 2. Immune cell populations. Journal of Pediatric Gastroenterology and Nutrition 34: 145153.Google ScholarPubMed
Dhanakoti, S. N. and Draper, H. H. 1987. Response of urinary malondialdehyde to factors that stimulate lipid peroxidation in vivo. Lipids 2: 643646.CrossRefGoogle Scholar
Duthie, S. J., Ma, A., Ross, M. A. and Collins, A. R. 1996. Antioxidant supplementation decreases oxidative damage in human lymphocytes. Cancer Research 56: 12911295.Google ScholarPubMed
Fidler, N., Salobir, K. and Stibilj, V. 2000. Fatty acid composition of human milk in different regions of Slovenia. Annals of Nutrition and Metabolism 44: 187193.CrossRefGoogle ScholarPubMed
Fukunaga, K., Takama, K. and Suzuki, T. 1995. High-performance liquid chromatographic determination of plasma malondialdehyde level without a solvent extraction procedure. Analytical Biochemistry 230: 2023.CrossRefGoogle ScholarPubMed
Gesellschaft für Ernährungsphysiologie. 1988. Energie- und Nährstoffbedarf landwirtschaftlicher Nutztiere, first edition. DLG-Verlag, Frankfurt am Main.Google Scholar
Godderis, B. M., Boersma, W. J. A., Cox, E., Stede, Y. van der, Koenen, M. E., Vancaeneghem, S., Mast, J. and Broeck, W. van den. 2002. The porcine and avian intestinal immune system and its nutritional modulation. In Nutrition and health of the gastrointestinal tract (ed. Block, M. C. and Vahl, H. A.), pp. 97134. Wageningen Academic Publishers, Wageningen.Google Scholar
Jyonouchi, H. 1994. Nucleotide actions on humoral immune responses. Journal of Nutrition 124: 138S143S.CrossRefGoogle ScholarPubMed
Lopez-Navarro, A. T., Ortega, M. A., Peragon, J., Bueno, J. D., Gil, A. and Sanchez-Pozo, A. 1996. Deprivation of dietary nucleotides decreases protein synthesis in the liver and small intestine in rats. Gastroenterology 110: 17601769.Google ScholarPubMed
McCowen, K. C. and Bistrian, B. R. 2003. Immunonutrition: problematic or problem solving? American Journal of Clinical Nutrition 77: 764770.CrossRefGoogle ScholarPubMed
Martinez-Augustin, O., Boza, J. J., Navarro, J., Martinez-Valverde, A., Araya, M. and Gil, A. 1997. Dietary nucleotides may influence the humoral immunity in immunocompromised children. Nutrition 13: 465469.CrossRefGoogle ScholarPubMed
Miller, N. J. and Rice Evans, C. A. 1996. Spectrophotometric determination of antioxidant activity. Redox Report 3: 161171.CrossRefGoogle Scholar
National Research Council. 1998. Nutrient requirement of swine, 10th edition. National Academy Press, Washington, DC.Google Scholar
Naumann, C. and Bassler, R. 1997. Methodenbuch. Die chemische Untersuchung von Futtermitteln, 4. Ergänzungslieferung, VDLUFA-Verlag Darmstadt.Google Scholar
Olive, P. L., Wlodek, D., Durand, R. E. and Banath, J. P. 1992. Factors influencing DNA migration from individual cells subjected to gel-electrophoresis. Experimental Cell Research 198: 259267.CrossRefGoogle ScholarPubMed
Paglia, D. E. and Valentine, W. N. 1967. Studies of the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine 70: 158169.Google ScholarPubMed
Pajk, T., Rezar, V., Marinšek Logar, R., Salobir, K. and Salobir, J. 2002. Formation of lymphocyte and granulocyte DNA damage caused by nutritional oxidative stress in pigs. Free Radical Research 36: 8182.Google Scholar
Park, P. W. and Goins, R. E. 1994. In situ preparation of fatty acid methyl esters for analysis of fatty acid composition in food. Journal of Food Science 59: 12621266.CrossRefGoogle Scholar
Pawelec, G., Remarque, E., Barnett, Y. and Solana, R. 1998. T cells and ageing. Frontiers of Bioscience 3: 3699.CrossRefGoogle Scholar
Prosky, L., Asp, N. G., Schweizer, T. F., DeVries, J. W. and Furda, I. 1992. Determination of insoluble and soluble dietary fiber in foods and food products: collaborative study. Journal of the Association of Official Analytical Chemists 75: 360367.Google Scholar
Rezar, V., Pajk, T., Marinšek Logar, R., Ješe-Janežč, V., Salobir, K., Orešnik, A. and Salobir, J. 2003. Wheat and oat bran effectively reduce oxidative stress induced by high fat diets in pigs. Annals of Nutrition and Metabolism 47: 7884.CrossRefGoogle ScholarPubMed
Salobir, J., Rezar, V., Pajk, T., Levart, A., Marinšek-Logar, R. and Salobir, K. 2002. Blackcurrant juice and vitamin E intake reduce oxidative stress in vivo. In Technology-food-nutrition-health: book of abstracts (ed. Raspor, P. and Hočevar, I.), Central European congress on food and nutrition, Biotechnical Faculty, Ljubljana, abstract no. 91.Google Scholar
Singh, N. P. 1997. Sodium ascorbate induces DNA single-strand breaks in human cells in vitro. Mutation Research 375: 195203.CrossRefGoogle ScholarPubMed
Singh, N. P., McCoy, M. T., Tice, R. R. and Schneider, E. L. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research 175: 184191.CrossRefGoogle ScholarPubMed
Statistical Analysis Systems Institute. 2000. SAS/STAT user's guide, version 8e. SAS Institute Inc., Cary, NC.Google Scholar
Uauy, R., Quan, R. and Gil, A. 1994. Role of nucleotides in intestinal development and repair: implications for infant nutrition Journal of Nutrition 124: 1436S1441S.CrossRefGoogle ScholarPubMed
Vider, J., Lehtmaa, J., Kullisaar, T., Vihalemm, T., Zilmer, K., Kairane, C., Landõr, A., Karu, T. and Zilmer, M. 2001. Acute immune response in respect to exercise-induced oxidative stress. Pathophysiology 7: 263270.CrossRefGoogle ScholarPubMed
Wong, S. H. Y., Knight, J. A., Hopfer, S. M., Zaharia, O., Leach, C. N. and Sunderman, F. W. J. 1987. Lipoperoxides in plasma as measured by liquid-chromatographic separation of malondialdehyde–thiobarbituric acid adduct. Clinical Chemistry 33: 214220.CrossRefGoogle ScholarPubMed
World Health Organization. 2003. Diet, nutrition and the prevention of chronic disease. WHO technical report series, 916, pp 5460. World Health Organisation, Geneva.Google Scholar
Yamamoto, S., Wang, M. F., Adjei, A. A. and Ameho, C. K. 1997. Role of nucleosides and nucleotides in the immune system, gut reparation after injury, and brain function. Nutrition 13: 372374.CrossRefGoogle ScholarPubMed
Yamauchi, K., Adjei, A. A., Ameho, C. K., Sato, S., Okamoto, K., Kakinohana, S. and Yamamoto, S. 1998. Nucleoside-nucleotide mixture increases bone marrow cell number and small intestinal RNA content in protein-deficient mice after an acute bacterial infection. Nutrition 14: 270275.CrossRefGoogle ScholarPubMed
Yu, I. -T., Wu, J. -F., Yang, P. -C., Liu, C. -Y., Lee, D. -N. and Yen, H. -T. 2002. Rôles of glutamine and nucleotides in combination on growth, immune responses and FMD antibody titres of weaned pigs. Animal Science 75: 379385.CrossRefGoogle Scholar
Zomborszky-Kovacs, M., Bardos, L., Biro, H., Tuboly, S., Wolf-Taskai, E., Toth, A. and Soos, P. 2000. Effect of beta-carotene and nucleotide base supplementation on blood composition and immune response in weaned pigs. Acta Veterinaria Hungarica 48: 301311.CrossRefGoogle ScholarPubMed