Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-20T14:22:22.002Z Has data issue: false hasContentIssue false

Effect of nitrogen supply on the retention and excretion of nitrogen and on energy metabolism of pregnant sows

Published online by Cambridge University Press:  02 September 2010

H. Everts
Affiliation:
Institute for Animal Science and Health (ID-DLO), Branch Runderweg, PO Box 160, NL 8200 AD Lelystad, The Netherlands
R. A. Dekker
Affiliation:
Institute for Animal Science and Health (ID-DLO), Branch Runderweg, PO Box 160, NL 8200 AD Lelystad, The Netherlands
Get access

Abstract

To reduce nitrogen excretion (NEx) the effect of nitrogen supply on nitrogen retention (NR) and NEx was studied in pregnant sows during three parities. A nitrogen supply of 40 g/day (treatment L) was compared with 62 g/day (treatment C) during day 0 to 85 of pregnancy. In the last month of pregnancy nitrogen supply on treatment L was 50 g/day and on treatment C 74 g/day. Faecal digestible lysine supply followed the same pattern as nitrogen. Nitrogen and energy balances were measured during mid pregnancy (day 50 to 60; no. = 22) and late pregnancy (day 105 to 112; no. = 60). During mid pregnancy treatments had a minor affect on NR and energy metabolism. NEx on treatment L was proportionately about 0·40 lower than on treatment C. During late pregnancy NR was lower on treatment L than on treatment C. NEx on treatment L was proportionately reduced by 0·35 compared with treatment C. In parity 1 the lower NR on treatment L was compensated by a higher fat gain. Results indicate that nitrogen and faecal digestible lysine supply on treatment L were close to minimal requirement in late pregnancy. Assumed values for maintenance requirement of nitrogen (0·45 g N per kg M0·75) and efficiency of ingested nitrogen to NR (0·6) were in line with the results of the balance trials. The observed nitrogen retention of sows, especially during mid pregnancy, permits a reduced nitrogen supply to reduce NEx.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agricultural Research Council. 1981. The nutrient requirements of pigs. Commonwealth Agricultural Bureaux, Slough.Google Scholar
Atinmo, T., Pond, W. G. and Barnes, K. H. 1974. Effect of maternal energy vs. protein restriction on growth and development of progeny in swine. Journal of Animal Science 39:703711.CrossRefGoogle ScholarPubMed
Becker, K., Farries, F. and Pfeffer, K. 1979. Changes in body composition of pig fetuses during pregnancy. Archiv für Tierernährung 29: 561568.Google ScholarPubMed
Beyer, M. 1986. ??? Promotionsarbeit, Forsehungszentrum für Tierproduktion Durnmorstori-Rostock.Google ScholarPubMed
Bolduan, G. 1990. Erste Ergebnisse zur reduzierte Eiweissfutterung bei Iragende Sauen. Tierzucht 44(12): 541.Google Scholar
Buraczewski, S. 1973. Views on the pig's requirements for amino acids and new sources of these nutrients suitable for the use in the feeding of pigs. In New developments on the provision of amino acids in the diets of pigs and ??? U.N. Economical and Social Council Symposium, vol 1, pp. 7397.Google Scholar
Carr, J. R., Boorman, K. N. and Cole, D. J. A. 1977. Nitrogen retention in the pig. British journal of Nutrition 37: 143155.CrossRefGoogle ScholarPubMed
Close, W. H., Noblet, J. and Heavens, R. P. 1985. Studies on the energy metabolism of the pregnant sow. 2. The partition and utilization of metabolizable energy intake in pregnant and mm pregnant animals. British journal of Nutrition 53: 267274.CrossRefGoogle ScholarPubMed
Corley, J. R., Fsch, M. W., Bahr, J. M. and Faster, R. A. 1983. Amino acid supplementation of low-protein diets for swine: effects of gestation treatment on reproductive performance of gilts and sows. Journal of Animal Science 56: 108117.CrossRefGoogle ScholarPubMed
Cronin, G. M., Tartwijk, J. M. F. M. van, Hel, W. van der and Verstegen, M. W. A. 1986. The influence of degree of adaptation to tether-housing by sows in relation to behaviour and energy metabolism. Animal Production 42: 257268.Google Scholar
Centraal Veevoeder Bureau. 1986. [Nulrient requirements of livestock and feeding value of feedstuffs.] Centraal Veevoederbureau, Lelystad.Google Scholar
Duée, P. H. 1976. Chronologic de l'apport azote pendant le cycle de reproduction chez la truie. Annales de Zootechnie 25: 194212.CrossRefGoogle Scholar
Duée, P. H. and Rerat, A. 1975. Etude du besoin en lysine de la truie gestante nullipare. Annales dc Zootechnie 24: 447464.Google Scholar
Duée, P. H., Treil, F. and Camous, S. 1980. Influence de l'apport protéique durant la croissance et la première gestation sur les performances de reproduction et la composition eorporelle chez la truie. Annales de Zootechnie 29: 121136.CrossRefGoogle Scholar
Elsley, F. W. H., Anderson, D. M., McDonald, I., MacPherson, R. M. and Smart, R. 1966. A comparison of the live-weight changes, nitrogen retention and carcass composition of pregnant and non-pregnant gilts. Animal Production 8:391400.Google Scholar
Everts, H. 1991. The effect of feeding different sources of crude fibre during pregnancy on the reproductive performance of sows. Animal Production 52: 175184.Google Scholar
Everts, H. and Dekker, R. A. 1991. Effect of protein/lysine supply and of parity number on energy metabolism during pregnancy and lactation in sows. In Energy metabolism of farm animals (ed. Wenk, C. and Boessinger, M.), European Association for Animal Production publication no. 58, pp. 317320.Google Scholar
Everts, H. and Dekker, R. A. 1994. Balance trials and comparative slaughtering in breeding sows: description of techniques and observed accuracy. Livestock Production Science 37: 339352.CrossRefGoogle Scholar
Geuyen, T. P. A., Verhagen, J. M. F. and Verstegen, M. W. A. 1984. Effect of housing and temperature on metabolic rate of pregnant sows. Animal Production 38: 477485.Google Scholar
Greenhalgh, J. F. D., Elsley, F. W. H., Grubb, D. A., Lightfoot, A. L., Saul, D. W., Smith, P., Walker, N., Williams, D. and Peo, M. L. 1977. Coordinated trials on the protein requirements of sows. Animal Production 24: 307321.Google Scholar
Hammell, D. L., Kratzer, D. D., Cromwell, G. I. and Hays, V. W. 1976. Effect of protein malnutrition of the sow on reproductive performance and on postnatal learning and performance of the offspring. Journal of Animal Science 43B: 589597.CrossRefGoogle Scholar
Kalinowsky, J. and Chavez, E. R. 1990. Nitrogen and trace mineral balance of pregnant gilts under low dietary zinc intake. Journal of Trace Elements and Electrolytes in Health and Disease 4: 115125.Google Scholar
Leuillet, M., Etienne, M. and Salmon-Legagneur, E. 1979. Consequences d'une tres forte restriction azotée a differentes periodes de la gestation de la truie sur le developpement des foetus. Annales de biologic animate biochemie biophysique 19(B): 217223.Google Scholar
Mahan, D. C. 1977. Effect of feeding various gestation and lactation dietary protein sequences on long term reproductive performance in swine. Journal of Animal Science 45: 10611072.CrossRefGoogle ScholarPubMed
Mahan, D. C. 1979. Effect of dietary protein sequence on long term sow reproductive performance. Journal of Animal Science 49: 514521.CrossRefGoogle Scholar
Noblet, J., Close, W. H., Heavens, R. P. and Brown, D. 1985. Studies on the energy metabolism of the pregnant sow. 1. Uterus and mammary tissue development. British Journal of Nutrition 53: 251265.CrossRefGoogle ScholarPubMed
Noblet, J. and Etienne, M. 1987. Metabolic utilization of energy and maintenance requirements in pregnant sows. Livestock Production Science 16: 243257.CrossRefGoogle Scholar
Pond, W. G. 1973. Influence of maternal protein and energy nutrition during gestation on progeny performance in swine. Journal of Animal Science 36:175181.CrossRefGoogle ScholarPubMed
Pond, W. G., Maurer, R. R. and Klindt, J. 1991. Fetal organ response to maternal protein deprivation during pregnancy in swine. Journal of Nutrition 121: 504509.CrossRefGoogle ScholarPubMed
Poppe, S. und Wiesemuller, W. 1968. Untersuchungen über den Aminosäurenbedarf wachsender Schweine. 1. Mitteilung — Bestimmung des Lysinbedarfes mit Hilfe der N-Balanzmethode. Archiv für Tierernahrung 18: 392404.CrossRefGoogle Scholar
Speer, V. C. 1990. Partitioning nitrogen and amino acids for pregnancy and lactation in swine: a review. Journal of Animal Science 68: 553561.CrossRefGoogle ScholarPubMed
Vanschoubroek, F. and Spaendonck, R. van. 1973. Faktorieller Aufbau des Protein- und Aminosaurenbedrafs tragender Sauen. Zeitschrift für Tierphysiohgie, Tierernahrung und Futtermittelkunde 31:7191.CrossRefGoogle Scholar
Verstegen, M. A. W., Es, A. J. van and Nijkamp, H. J. 1971. Some aspects of energy metabolism of the sow during pregnancy. Animal Production 13: 677683.Google Scholar
Verstegen, M. W. A., Verhagen, J. M. F. and Hartog, L. A. den. 1987. Energy requirements of pigs during pregnancy: a review. Livestock Production Science 16: 7589.CrossRefGoogle Scholar
Whittemore, C. T., Franklin, M. F. and Pearce, B. S. 1980. Fat changes in breeding sows. Animal Production 31: 183190.Google Scholar
Whittemore, C. T. and Morgan, C. A. 1990. Model components for the determination of energy and protein requirements for breeding sows: a review. Livestock Production Science 26: 137.CrossRefGoogle Scholar
Woerman, R. L. and Speer, V. C. 1976. Lysine requirement for reproduction in swine. Journal of Animal Science 42: 114120.CrossRefGoogle ScholarPubMed
Yang, H., Eastham, P. R., Phillips, P. and Whittemore, C. T. 1989. Reproductive performance, body weight and body condition of breeding sows with differing body fatness at parturition, differing nutrition during lactation, and differing litter size. Animal Production 48:181201.CrossRefGoogle Scholar