Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T05:16:29.423Z Has data issue: false hasContentIssue false

Comparison of voluntary food intake, apparent digestibility, digesta kinetics and digestive tract content in Manchega and Lacaune dairy sheep in late pregnancy and early and mid lactation

Published online by Cambridge University Press:  18 August 2016

G. Caja
Affiliation:
Departament de Patologia i de Producció Animals, Universitat Autònoma Barcelona, 08193 Bellaterra, Spain
S. Calsamiglia
Affiliation:
Departament de Patologia i de Producció Animals, Universitat Autònoma Barcelona, 08193 Bellaterra, Spain
X. Such
Affiliation:
Departament de Patologia i de Producció Animals, Universitat Autònoma Barcelona, 08193 Bellaterra, Spain
J. Gasa
Affiliation:
Departament de Patologia i de Producció Animals, Universitat Autònoma Barcelona, 08193 Bellaterra, Spain
Get access

Abstract

Two experiments were carried out with pregnant (experiment 1) and lactating ewes (experiment 2), to compare dry-matter (DM) intake, and total tract apparent digestibility, digesta kinetics and weight of digestive tract contents of Lacaune and Manchega sheep, with the aim of explaining possible differences between the breeds in voluntary food intake. In experiment 1, 20 3-year-old single-bearing pregnant ewes, 10 Manchega and 10 Lacaune, were permanently housed for the last 10 weeks of pregnancy. The diet used consisted of lucerne hay, offered ad libitum, supplemented with 0·3 kg/day of concentrate. DM and digestible DM intake per kg M0·75 were higher (P < 0·01) in Lacaune than in Manchega sheep. Breed did not affect total tract apparent digestibility, fractional rates of passage, transit time, total mean retention time, or weight of digestive tract contents. Changes in body weight and body condition score were similar between breeds. In contrast, Lacaune lambs tended (P = 0·09) to weigh less than Manchega lambs, suggesting genetic differences in the energy utilization between breeds in late pregnancy. Higher DM intake observed in Lacaune sheep may have been related to a higher energy demand for mammary development. In experiment 2, 32 3-year-old lactating multiparous ewes, 16 Manchega and 16 Lacaune, were permanently housed during the first 12 weeks of lactation. The experimental diet used was based on a mixture of maize silage and dehydrated lucerne (10: 1, fresh weight basis), offered ad libitum, and supplemented with 0·8 kg/day of concentrate. Milk, fat and protein yield as well as DM and digestible DM intake in Lacaune ewes was higher (P < 0·01) than in Manchega ewes. DM intake was constant in Lacaune sheep with advancing lactation, while in Manchega sheep DM intake decreased. Throughout this period Lacaune ewes lost 0·5 kg of body weight while Manchega gained 4·4 kg. Breed did not affect either apparent digestibility of DM, organic matter and neutral-detergent fibre, or fractional rates of passage, transit time and total mean retention time. The weight of total tract digestive contents was greater (P < 0·05) in Lacaune than in Manchega sheep, particularly in the reticulo-rumen. Results suggest that the scheme of selection in Lacaune dairy sheep has increased milk yield together with voluntary food intake, the latter being associated with an increase in the rumen fill capacity. The higher milk yield of Lacaune ewes cannot be attributed to the higher DM intake only; other factors, i.e. mobilization of fat reserves, are required to support this higher milk output.

Type
Ruminant nutrition, behaviour and production
Copyright
Copyright © British Society of Animal Science 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agricultural and Food Research Council. 1993. Energy and protein requirements of ruminants. An advisory manual prepared by the AFRC Technical Committee on Responses to Nutrients. CAB International, Wallingford.Google Scholar
Agricultural Research Council. 1980. The nutrient requirements of ruminant livestock. Commonwealth Agricultural Bureaux, Slough.Google Scholar
Allen, M. S. 1996. Physical constraints on voluntary intake of forages by ruminants. Journal of Animal Science 74: 30633075.CrossRefGoogle ScholarPubMed
Allen, M. S. and Mertens, D. R. 1988. Evaluating constraints on fiber digestion by rumen microbes. Journal of Nutrition 118: 261270.CrossRefGoogle ScholarPubMed
Barillet, F. 1997. Genetics of milk production. In The genetics of the sheep (eds. Piper, L. and Ruvinsky, A.), pp. 539564. CAB International, Wallingford.Google Scholar
Blaxter, K. L., Clapperton, J. L. and Wainman, F. W. 1966. The extent of differences between six British breeds of sheep in their metabolism, feed intake and utilization, and resistance to climatic stress. Bristish Journal of Nutrition 20: 283294.CrossRefGoogle ScholarPubMed
Blaxter, K. L., Graham, N. M. and Wainman, F. W. 1956. Some observations on the digestibility of food by sheep and on related problems. British Journal of Nutrition 10: 6991.CrossRefGoogle ScholarPubMed
Bocquier, F., Barillet, F., Guillouet, P. and Jacquin, M. 1993. Prévision de l’énergie du lait de brebis à partir de différents résultats d’analyses: proposition de lait standard pour les brebis laitières. Annales de Zootechnie 42: 5766.CrossRefGoogle Scholar
Bocquier, F., Thériez, M. and Brelurut, A. 1987. Recomendations alimentaires pour les brebis en lactation. Bulletin technique du Centre de Recherches Zootechniques et Veterinaires de Theix, INRA, no. 70, pp. 199211.Google Scholar
Bremmer, D. R., Christensen, J. O., Grummer, R. R., Rasmussen, F. E. and Wiltbank, M. C. 1999. Effects of induced parturition and estradiol on feed intake, liver triglyceride concentration, and plasma metabolites of transition dairy cows. Journal of Dairy Science 82: 14401448.CrossRefGoogle ScholarPubMed
Buttazzoni, L. and Mayo, I. L. 1989. Genetic parameters of estimated net energy efficiencies for milk production, maintenance and body weight change in dairy cows. Journal of Dairy Science 72: 671677.CrossRefGoogle ScholarPubMed
Commision of the European Communities. 1984. Official Journal of the European Communities, L 15/28. CEC, Belgium.Google Scholar
Cowan, R. T., Robinson, J. J., McDonald, I. and Smart, R. 1980. Effects of body fatness at lambing and diet in lactation on body tissues loss, feed intake and milk yield of ewes in early lactation. Journal of Agricultural Science, Cambridge 95: 497514.CrossRefGoogle Scholar
Dhanoa, M. S., Siddons, R. C., France, J. and Gale, D. L. 1985. A multicompartmental model to describe marker excretion patterns in ruminant faeces. British Journal of Nutrition 53: 663671.CrossRefGoogle ScholarPubMed
Doney, J. M., Peart, J. N., Smith, W. F. and Louda, F. 1979. A consideration of the techniques for estimation of milk yield by suckled sheep and a comparison of estimated yield obtained by two methods in relation to the effect of breed, level of production and stage of lactation. Journal of Agricultural Science, Cambridge 92: 123132.CrossRefGoogle Scholar
Faichney, G. J. 1993. Digesta flow. In Quantitative aspects of ruminant digestion and metabolism (ed. Forbes, J. M. and France, J.), pp. 5385. CAB International, Wallingford, Oxon, UK.Google Scholar
Faichney, G. J. and Gherardi, S. G. 1986. Relationships between organic-matter digestibility dry-matter intake and solute mean retention times in sheep given a ground and pelleted diet. Journal of Agricultural Science, Cambridge 106: 219222.Google Scholar
Faichney, G. J. and White, G. A. 1988. Rates of passage of solutes, microbes and particulate matter through the gastrointestinal tract of ewes fed at a constant rate throughout gestation. Australian Journal of Agricultural Research 39: 481492.Google Scholar
Federation of European Laboratory Animal Science Associations. 1997. Recommendations for the euthanasia of experimental animals. Laboratory Animals 31: 132.CrossRefGoogle Scholar
Fell, B. F., Campbell, R. M., Mackie, W. S. and Weekes, T. E. C. 1972. Changes associated with pregnancy and lactation in some extra-reproductive organs of the ewe. Journal of Agricultural Science, Cambridge 79: 397407.CrossRefGoogle Scholar
Forbes, J. M. 1970. The voluntary food intake of pregnant and lactating ruminants: a review. British Veterinary Journal 126: 111.CrossRefGoogle ScholarPubMed
Forbes, J. M. 1986. The effects of sex hormones, pregnancy, and lactation on digestion, metabolism, and voluntary food intake. In Control of digestion and metabolism in ruminants (ed. Milligan, L. P., Grovum, W. L. and Dobson, A.), pp. 420435. Reston Publishing, Reston, VA.Google Scholar
Forbes, J. M. 1995. Reproduction and lactation. In Voluntary food intake and diet selection in farm animals, pp. 186203. CAB International, Wallingford.Google Scholar
Gasa, J., Holtenius, K., Sutton, J. D., Dhanoa, M. S. and Nappers, D. J. 1991. Ruminal fill and digesta kinetics in lactating Friesian cows given two levels of concentrates with two types of grass silage ad libitum . British Journal of Nutrition 66: 381398.CrossRefGoogle Scholar
Givens, D. I. and Moss, A. R. 1994. Effect of breed, age and bodyweight of sheep on the measurement of apparent digestibility of dried grass. Animal Feed Science and Technology 46: 155162.CrossRefGoogle Scholar
Goering, H. K. and Van Soest, P. J. 1970. Forage fiber analyses (apparatus, reagents, procedures, and some applications). Agricultural handbook no. 379. ARS, USDA, Washington, DC.Google Scholar
Graham, N. McC. and Williams, A. J. 1962. The effects of pregnancy on the passage of food through the digestive tract of sheep. Australian Journal of Agricultural Research 13: 894900.Google Scholar
Gunter, S. A., Judkins, M. B., Krysl, L. J., Broesder, J. T., Barton, R. K., Rueda, B. R., Hallford, D. M. and Holcombe, D. W. 1990. Digesta kinetics, ruminal fermentation characteristics and serum metabolites of pregnant and lactating ewes fed chopped lucerne hay. Journal of Animal Science 68: 38213831.CrossRefGoogle Scholar
Hadjipieris, G. and Holmes, W. 1966. Studies on feed intake and feed utilisation by sheep. 1. The voluntary feed intake of dry, pregnant and lactating ewes. Journal of Agricultural Science, Cambridge 66: 217223.CrossRefGoogle Scholar
Institut National de la Recherche Agronomique. 1988. Alimentation des bovins, ovins et caprins. INRA, Paris.Google Scholar
Kaske, M. and Groth, A. 1997. Changes in factors affecting the rate of digesta passage during pregnancy and lactation in sheep fed on hay. Reproduction, Nutrition Development 37: 573588.CrossRefGoogle ScholarPubMed
Ketelaars, J. J. M. H. and Tolkamp, B. J. 1992 Toward a new theory of feed intake regulation in ruminants. 1. Causes of differences in voluntary feed intake: critique of current views. Livestock Production Science 30: 269296.CrossRefGoogle Scholar
Le Du, Y. L. P. and Penning, P. D. 1982. Animal based techniques for estimating herbage intake. In Herbage intake handbook (ed. Leaver, J. D.), pp. 3775. Grassland Research Institute, Hurley, Maidenhead.Google Scholar
Littell, R. C., Milliken, G. A., Stroup, W. W. and Wolfinger, R. D. 1996. SAS system for mixed models. SAS Institute Inc., Cary, NC.Google Scholar
Mann, D. L., Goode, L. and Pond, K. R. 1987. Voluntary intake, gain, digestibility, rate of passage and gastrointestinal tract fill in tropical and temperate breeds of sheep. Journal of Animal Science 64: 880886.CrossRefGoogle ScholarPubMed
Mertens, D. R. and Ely, L. O. 1979. A dynamic model of fiber digestion and passage in the ruminant for evaluating forage quality. Journal of Animal Science 49: 10851095.CrossRefGoogle Scholar
Moore, R. K., Kennedy, B. W., Schaeffer, L. R. and Moxley, J. E. 1990. Parameter estimates for feed intake production in first lactation using milk recording data. Journal of Dairy Science 73: 826834.CrossRefGoogle Scholar
National Research Council. 1987. Predicting feed intake of food-producing animals. National Academy Press, Washington|D.C.Google Scholar
Patterson, D. S. P. 1963. Some observations on the estimation of non-esterified fatty acid concentrations in cow and sheep plasma. Research in Veterinary Science 4: 230237.CrossRefGoogle Scholar
Persaud, P., Simm, G. and Hill, W. G. 1991. Genetic and phenotypic parameters for yield, food intake and efficiency of dairy cows fed ad libitum. 1. Estimates for total lactation measures and their relationship with live-weight traits. Animal Production 52: 435444.Google Scholar
Pérez-Guzmán, M. D. and Montoro, V. 1996. Base animal en el ovino de producción de leche. In Zootecnia. Bases de Producción Animal. 8. (ed. Buxadé, C.), pp. 215226. Mundi-Prensa, Madrid.Google Scholar
Ranilla, M. J., Carro, M. D., Valdés, C., Giráldez, F. J. and López, S. 1997. A comparative study of ruminal activity in Churra and Merino sheep offered alfalfa hay. Animal Science 65: 121128.CrossRefGoogle Scholar
Rémond, B. 1988. Evolution du poids du contenu du réticulo-rumen chez les vaches laitières au cours des deux premiers mois de la lactation. Reproduction, Nutrition, Développement 28: 109110.CrossRefGoogle Scholar
Russel, A. J. F. 1984. Means of assessing the adequacy of nutrition of pregnant ewes. Livestock Production Science 11: 429436.CrossRefGoogle Scholar
Russel, A. J. F., Doney, J. M. and Gunn, R. G. 1969. Subjective assessment of body fat in live sheep. Journal of Agricultural Science, Cambridge 72: 451454.Google Scholar
Sánchez, A. 1994. Historia de la raza ovina Manchega. In Ganado Ovino. Raza Manchega (ed. Gallego, L., Torres, A. and Caja, G.), pp. 1135, Mundi-Prensa, Madrid.Google Scholar
Statistical Analysis Systems Institute. 1989. SAS/STAT user’s guide, version 6, fourth edition, volume 2. SAS Institute Inc., Cary, NC.Google Scholar
Thériez, M., Bocquier, F. and Brelurut, A. 1987. Recommandations alimentaires pour les brebis à l’entretien et en gestation. Bulletin technique du Centre de Recherches Zootechniques et Veterinaires de Theix, INRA, no. 70, pp. 185197.Google Scholar
Tuinstra-Lauwaars, M., Hopkin, E. and Boelsma, S. 1985. Inventory of IDF/ISO/AOAC adopted methods of analysis for milk and milk products: 1985 update. IDF Bulletin 193: 124.Google Scholar
Van Soest, P. J. 1994. Intake. In Nutritional ecology of the ruminant, second edition, pp. 337353. Cornell University Press, Ithaca, NY.CrossRefGoogle Scholar
Van Soest, P. J., Robertson, J. B. and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 35833597.CrossRefGoogle ScholarPubMed
Vazquez-Añon, M., Bertics, S., Luck, M., Grummer, R. R. and Pinheiro, J. 1994. Peripartum liver triglyceride and plasma metabolites in dairy cows. Journal of Dairy Science 77: 15211528.CrossRefGoogle ScholarPubMed
Veerkamp, R. F. 1998. Selection for economic efficiency of dairy cattle using information on live weight and feed intake: a review. Journal of Dairy Science 81: 11091119.CrossRefGoogle ScholarPubMed
Waldo, D. R., Smith, L. W. and Cox, E. L. 1972. Model of cellulose disappearance from the rumen. Journal of Dairy Science 55: 125129.CrossRefGoogle ScholarPubMed
Weston, R. H. 1982. Animal factors affecting feed intake. In Nutrition limits to animal production from pasture (ed. Hacker, J. B.), pp. 183198. CAB Farnham Royal, Slough.Google Scholar
Weston, R. H. 1988. Factors limiting the intake of feed by sheep. XI. The effect of pregnancy and early lactation on the digestion of a medium-quality roughage. Australian Journal of Agricultural Research 39: 659669.CrossRefGoogle Scholar