Published online by Cambridge University Press: 18 August 2016
One of the benefits of the genomics revolution for animal production will be knowledge of genes that can be used to select more profitable livestock. Although it is possible to use genetic markers linked to genes of economic importance, tests for the genes themselves will be much more successful. Consequently finding genes of economic importance to livestock will be a major research aim for the future. Most traits of economic importance are quantitative traits affected by many genes. Mutations at many genes (e.g. 500) and at many positions within a gene (e.g. 1000 coding and non-coding bases) can affect a typical quantitative trait. The effect of these mutations on phenotype is usually small (e.g. 0·1 standard deviation) but occasionally large. Many mutations are lost from the population through genetic drift and selection, so that polymorphisms exist at only a subset of the relevant genes (e.g. 100 genes). Finding these genes, that have relatively small effects, is more difficult than finding genes for a classical Mendellian trait but, as the genomic tools become more powerful, it is becoming feasible and some successes have already occurred. The standard approach is to map a quantitative trait loci (QTL) to a chromosome region using linkage and linkage disequilibrium. Then test polymorphisms in positional candidate genes for an effect on the trait. Tools such as genomic sequence, EST collections and comparative maps make this approach feasible. Candidate genes can be selected based on functional data such as gene expression obtained from microarrays. At present the gain in rate of genetic improvement from use of DNA-based tests for QTL is small, because selection without them is already quite accurate, not enough QTL have been identified and genotyping is too expensive. However, in the future, with many QTL identified and inexpensive genotyping combined with decreased generation intervals, large gains are possible.