Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T12:07:00.692Z Has data issue: false hasContentIssue false

A note on consequences of single-trait selection for insulin-like growth factor 1 (IGF-1) in beef heifers

Published online by Cambridge University Press:  02 September 2010

M. E. Davis
Affiliation:
Department of Animal Science, Ohio State University, Columbus, 43210-1095, USA
M. D. Bishop
Affiliation:
USDA, ARS, Roman L. Hruska US Meat Animal Research Center, PO Box 166, Clay Center, NE, 68933-0166, USA
Get access

Abstract

Eight sets of identical twin heifers and their first three calf crops were used to determine effects of single-trait selection for blood serum insulin-like growth factor 1 (IGF-1). Twin heifers were offspring of Simmental sires and Hereford × Simmental or Hereford × Angus dams. All 16 heifers were mated with the same Simmental bull in each year of the study to produce calves born in 1989, 1990 and 1991 (no. = 16, 13 and 10, respectively). Although differences were noted in performance of progeny from the four twins with the highest v. the four with the lowest IGF-1 concentrations, they zoere not large enough to recommend single-trait selection for blood serum IGF-1 in beef heifers.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlborn-Breier, G., Breier, B. H., Wickham, B. W. and Gluckman, P. D. 1987. Proceedings of the fourth animal science congress, Asian-Australasian Association of Animal Production Science, p. 156.Google Scholar
Anderson, P. T., Bergen, W. G., Merkel, R. A., Enright, W. J., Zinn, S. A., Refsal, K. R. and Hawkins, D. R. 1988. The relationship between composition of gain and circulating hormones in growing beef bulls fed three dietary crude protein levels. Journal of Animal Science 66: 30593067.CrossRefGoogle ScholarPubMed
Bala, R. M., Lopatka, J., Leung, A., McCoy, E. and McArthur, R. G. 1981. Serum immunoreactive somatomedin levels in normal adults, pregnant women at term, children at various ages and children with constitutionally delayed growth. Journal of Clinical Endocrinology and Metabolism 52: 508512.CrossRefGoogle ScholarPubMed
Baumrucker, C. R. and Stemberger, B. H. 1989. Insulin and insulin-like growth factor-l stimulate DNA synthesis in bovine mammary tissue in vitro. Journal of Animal Science 67: 35033514.CrossRefGoogle Scholar
Baxter, R. C., Martin, J. L. and Handelsman, D. J. 1984. Identification of human semen insulin-like growth factor-I/somatomedin-C immunoreactivity and binding protein. Ada Eudocrinologia 106: 420427.Google ScholarPubMed
Bishop, M. D. 1991. Insulin-like growth factor I in beef cattle: gene location, repeatability of measurement and criteria for selection. Ph.D. Dissertation, Ohio State University, Columbus.Google Scholar
Bishop, M. D., Simmen, R. C. M., Simmen, F. A. and Davis, M. E. 1989. The relationship of insulin-like growth factor-l with postweaning performance in Angus beef cattle. Journal of Animal Science 67: 28722880.CrossRefGoogle Scholar
Blair, H. T., McCutcheon, S. N. and Mackenzie, D. D. S. 1990. Physiological predictors of genetic merit. Proceedings of the eighth conference of the Australian Association of Animal Breeding and Genetics, Palmerston North and Hamilton, New Zealand, pp. 133142.Google Scholar
Buonomo, F. C., Lauterio, T. J., Baile, C. A. and Campion, D. R. 1987. Determination of insulin-like growth factor I (IGFI) and IGF binding protein levels in swine. Domestic Animal Endocrinology 4:2331.CrossRefGoogle Scholar
Copeland, K. C., Eichberg, J. W., Parker, C. R. and Bartke, A. 1985. Puberty in the chimpanzee: somatomedin C and its relationship to somatic growth and steroid hormone concentrations. Journal of Clinical Endocrinology and Metabolism 60:11541160.CrossRefGoogle ScholarPubMed
Copeland, K. C., Kuehl, T. J. and Castracane, V. D. 1982. Pubertal endocrinology of the baboon: elevated somatomedin-C/insulin-like growth factor 1 at puberty. Journal of Clinical Endocrinology and Metabolism 55: 11981201.CrossRefGoogle ScholarPubMed
Davis, M. E. and Bishop, M. D. 1991. Preliminary results on between and within twin set variation in insulin-like growth factor I (IGF-1) and some relationships with performance traits in identical twin heifers. Livestock Production Science 27: 255262.CrossRefGoogle Scholar
Davoren, J. B. and Hsueh, A. J. W. 1986. Growth hormone increases ovarian levels of immunoreactive somatomedin C/insulin-like growth factor 1 in vivo. Endocrinology 118: 888890.CrossRefGoogle ScholarPubMed
D'Ercole, A. J., Stiles, A. D. and Underwood, L. E. 1984. Tissue concentrations of somatomedin C: further evidence for multiple sites of synthesis and paracrine or autocrine mechanisms of action. Proceedings of the National Academy of Science, USA 81: 935939.CrossRefGoogle ScholarPubMed
Eigenmann, J. E., Patterson, D. F., Zapf, J. and Froesch, E. R. 1984. Insulin-like growth factor I in the dog: a study in different dog breeds and in dogs with growth hormone elevation. Ada Endocrinologica 105: 294301.Google ScholarPubMed
Enns, R. M., Brinks, J. S., Hossner, K. and Mortimer, R. G. 1991. Parameter estimates of insulin-like growth factor I (IGF-I) and performance traits in beef cattle. Journal of Animal Science 69: suppl. 1, p. 204.Google Scholar
Hall, K., Enberg, G., Ritzen, E. M., Svan, H., Fryklund, L. and Takano, K. 1980. Somatomedin A levels in serum from healthy children and from children with growth hormone deficiency or delayed puberty. Ada Endocrinologica 94: 155165.Google ScholarPubMed
Hammond, J. M., Baranao, J. L. S., Skaleris, D., Knight, A. B., Romanus, J. A. and Rechler, M. M. 1985. Production of insulin-like growth factors by ovarian granulosa cells. Endocrinology 117: 25532555.CrossRefGoogle ScholarPubMed
Honegger, A. and Humbel, R. E. 1986. Insulin-like growth factor T and factor II in fetal and adult bovine serum: purification, primary structures and immunological cross-reactivities. Journal of Biological Chemistry 261: 569575.CrossRefGoogle ScholarPubMed
Hoshino, S., Wakita, M., Suzuki, M. and Yamamoto, K. 1982. Changes in a somatomedin-like factor and immunoassayable growth hormone during growth of normal and dwarf pullets and cockerels. Poultry Science 61: 777784CrossRefGoogle Scholar
Hsu, C. J. and Hammond, J. M. 1987. Gonadotropins and estradiol stimulate immunoreactive insulin-like growth factor I production by porcine granulosa cells in vitro. Endrocrinology 120: 198207.CrossRefGoogle ScholarPubMed
Huybrechts, L. M., King, D. B., Lauterio, T. J., Marsh, J. and Scanes, C. G. 1985. Plasma concentrations of somatomedin C in hypophysectomized dwarf and intact growing domestic fowl as determined by heterologous radioimmunoassay. Journal of Endocrinology 104: 233239.CrossRefGoogle ScholarPubMed
Jansen, M., van Schaik, F. M. A., Ricker, A. T., Bullock, B., Woods, D. E., Gabbay, K. H., Nussbaum, A. L., Sussenbach, J. S. and Van den Brande, J. L. 1983. Sequence of cDNA encoding human insulin-like growth factor I precursor. Nature, London 306: 609611.CrossRefGoogle ScholarPubMed
Kazmer, G. W., Canfield, R. W. and Bean, B. 1991. Somatotropin and prolactin profile characteristics in proven A1 dairy sires. Journal of Animal Science 69:16011606.CrossRefGoogle Scholar
Kerr, D. E., Laarveld, B., Fehr, M. I. and Manns, J. G. 1991. Profiles of serum IGF-I concentrations in calves from birth to eighteen months of age and in cows throughout the lactation cycle. Canadian Journal of Animal Science 71: 695705.CrossRefGoogle Scholar
Kiddy, C. A. 1979. A review of research on genetic variation in physiological characteristics related to performance in dairy cattle. Journal of Dairy Science 62: 818824.CrossRefGoogle ScholarPubMed
Klindt, J. 1988. Relationships among growth hormone and prolactin secretory parameter estimates in Holstein bulls and their predicted differences for lactational traits. Journal of Animal Science 66: 27842790.CrossRefGoogle ScholarPubMed
Letcher, R., Simmen, R. C. M., Bazer, F. W. and Simmen, F. A. 1989. Insulin-like growth factor-I expression during early conceptus development in the pig. Biology of Reproduction 41: 11431151.CrossRefGoogle ScholarPubMed
Luna, A. M., Wilson, D. M., Wibbelsman, C. J., Brown, R. C., Nagashima, R. J., Hintz, R. L. and Rosenfeld, R. G. 1983. Somatomedins in adolescence: a cross-sectional study of the effect of puberty on plasma insulin-like growth factor I and factor II levels. Journal of Clinical Endocritiology and Metabolism 57:268271.CrossRefGoogle Scholar
Lund-Larsen, T. R., Sundby, A., Kruse, V. and Velle, W. 1977. Relation between growth rate, serum somatomedin and plasma testosterone in young bulls. Journal of Animal Science 44: 189194.CrossRefGoogle ScholarPubMed
Nugent, R. A., Jenkins, T. G., Roberts, A. J. and Klindt, J. 1993. Relationship of post-partum interval in mature beef cows with nutritional environment, biological type and serum IGF-1 concentrations. Animal Production 56: 193200.Google Scholar
Olsen, R. F., Wangsness, P. J., Fatton, W. H. and Martin, R. J. 1981. Relationship of serum somatomedin-like activity and fibroblast proliferative activity with age and body weight gain in sheep. Journal of Animal Science 52: 6368.CrossRefGoogle ScholarPubMed
Park, N. H. 1993. Evaluation of serum insulin-like growth factor I (IGF-I) as a physiological predictor of genetic merit in beef cattle: repeatability, heritability and relationship with performance traits. Ph.D. Dissertation, Ohio State University, Columbus.Google Scholar
Ritzen, E. M. 1983. Chemical messengers between sertoli cells and neighbouring cells. Journal of Steroid Biochemistry 19: 499504.CrossRefGoogle ScholarPubMed
Rotwein, P., Pollock, K. M., Didier, D. K. and Krivi, G. G. 1986. Organization and sequence of the human insulin-like growth factor I gene. Journal of Biological Chemistry 261: 48284832.CrossRefGoogle ScholarPubMed
Sarko, T. A. 1993. Insulin-like growth factor 1: relationship with carcass characteristics, weather variables and photoperiod in Angus beef cattle. M.S. Thesis, Ohio State University, Columbus.Google Scholar
Simmen, R. C. M., Ko, Y. and Simmen, F. A. 1993. Insulin-like growth factors and blastocyst development. Theriogenology 39: 163175.CrossRefGoogle Scholar
Simmen, R. C. M., Simmen, F. A., Hofig, A., Farmer, S. J. and Bazer, F. W. 1990. Hormonal regulation of insulin-like growth factor gene expression in pig uterus. Endocrinology 127:21662174.CrossRefGoogle ScholarPubMed
Spicer, L. J., Clutter, A. C., Woltmann, M. D. and Buchanan, D. S. 1992. Plasma concentrations of insulin-like growth factor-I in gilts from two divergent growth genotypes. Oklalioma State University Bulletin MP-136, pp. 406409.Google Scholar
Spicer, L. J., Tucker, W. B. and Adams, G. D. 1990. Insulin-like growth factor-I in dairy cows: relationships among energy balance, body condition, ovarian activity, and estrous behavior. Journal of Dairy Science 73: 929937.CrossRefGoogle ScholarPubMed
Statistical Analysis Systems Institute. 1982. SAS user's guide: statistics, pp 139199. Statistical Analysis Systems Inc., Cary, NC.Google Scholar
Suttie, J. M., Corson, I. D., Gluckman, P. D. and Fennessy, P. F. 1991. Insulin-like growth factor 1, growth and body composition in red deer stags. Animal Production 53: 237242.Google Scholar
Zapf, J. and Froesch, E. R. 1986. Insulin-like growth factors/somatomedins: structure, secretion, biological actions and physiological role. Hormone Research 24: 121130.CrossRefGoogle ScholarPubMed