Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-20T10:41:48.849Z Has data issue: false hasContentIssue false

Effect of inclusion of sunflower hulls in the diet on performance, disaccharidase activity in the small intestine and caecal traits of growing rabbits

Published online by Cambridge University Press:  18 August 2016

N. Nicodemus
Affiliation:
Departamento de Producción Animal, ETS Ingenieros Agrónomos, Universidad Politécnica 28040, Madrid, Spain
J. García
Affiliation:
Departamento de Producción Animal, ETS Ingenieros Agrónomos, Universidad Politécnica 28040, Madrid, Spain
R. Carabaño
Affiliation:
Departamento de Producción Animal, ETS Ingenieros Agrónomos, Universidad Politécnica 28040, Madrid, Spain
J. C. de Blas*
Affiliation:
Departamento de Producción Animal, ETS Ingenieros Agrónomos, Universidad Politécnica 28040, Madrid, Spain
*
To whom correspondence should be addressed: e-mail: [email protected]
Get access

Abstract

A basal diet was formulated to meet the nutrient requirements of growing rabbits. Another diet was formulated by substituting 152 g/kg of the basal diet with sunflower hulls (SH diet). One hundred and sixty-eight weaned 30-day-old rabbits were given these diets and finishing performance was recorded. Eighty animals were used to study the effect of SH inclusion on caecal fermentation traits at two ages (5 and 35 days after weaning) and disaccharidase activity in the small intestine at 35 days after weaning. Inclusion of SH in the diet reduced growth rate by proportionately 0·056 in the first 2 weeks after weaning (P 0 ×001), but had no effect from 14 to 65 days after weaning. Accordingly, daily gain was lower by a factor of 0·035 over the whole finishing period (P 0×01). There was no effect of treatment on food intake during the 14 days after weaning, but SH inclusion tended to increase it from this time onwards ( +0·026; P = 0 ×06) and over the whole finishing period ( + 0·018; P = 0 ×09). This effect was parallel to a 0·09 proportional decrease in the weight of caecal contents (P 0 ×01) observed in animals of 2 kg live weight. Food efficiency was lower by a factor of 0·05 (P 0×001) in all the periods considered when SH was included in the diet. Mortality rate (6%) was not affected by treatment nor was caecal pH or caecal concentrations of volatile fatty acids and ammonia nitrogen either at 5 days (5×75, 72×7 mmol/l and 16×6 mmol/l, respectively) or at 35 days after weaning (5×70, 74×3 mmol/l and 9 ×7 5 mmol/l, respectively). Inclusion of SH increased sucrase specific activity at the ileum by a factor of 0·47 (P 0×01) but had no effect on maltase specific activity at the jejunum or ileum or on sucrase specific activity at the jejunum. In conclusion, SH included at moderate levels (150 g/kg) in the diet reduced accumulation of digesta in the caecum, which increased voluntary food intake but impaired growth rate and food efficiency. Inclusion of SH did not affect caecal fermentation or mortality.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Association of Official Analytical Chemists. 1990. Official methods of analysis, 15th edition. Association of Official Analytical Chemists, Arlington, VA.Google Scholar
Bellier, R. and Gidenne, T. 1996. Consequences of reduced fibre intake on digestion, rate of passage and caecal microbial activity in the young rabbit. British Journal of Nutrition 75: 353363.CrossRefGoogle ScholarPubMed
Bennegadi, N., Gidenne, T. and Licois, D. 2001. Impact of fibre deficiency and sanitary status on non-specific enteropathy of the growing rabbit. Animal Research 50: 401413.CrossRefGoogle Scholar
Blas, J. C.de, García, J. and Carabaño, R. 1999. Role of fibre in rabbit diets. A review. Annales de Zootechnie 48: 313.Google Scholar
Blas, J. C. de and Mateos, G. G. 1998. Feed formulation. In The nutrition of the rabbit (ed. Blas, J. C. de and Wiseman, J.), pp. 241253. Commonwealth Agricultural Bureaux, Wallingford, UK.Google Scholar
Broadhurst, R. B. and Jones, W. T. 1978. Analysis of condensed tannins using acidified vanillin. Journal of the Science of Food and Agriculture 29: 788794.Google Scholar
Chiou, P. W. S., Yu, B. and Lin, C. H. 1994. Effect of different components of dietary fiber on the intestinal morphology of domestic rabbits. Comparative Biochemistry and Physiology 108A: 629638.Google Scholar
Dahlquist, A. 1964. Method for assay of intestinal disaccharidases. Analytical Chemistry 7: 1825.Google Scholar
Das, B. and Arora, S. K. 1976. Changes in cell wall carbohydrates, in vitro dry matter digestibility, bulk density and hydration capacity of Pennisetum pedicellatum grass as affected by growth stage. Forage Research 2: 113119.Google Scholar
Escalona, B., Rocha, R., García, J., Carabaño, R. and Blas, C. de. 1999. Characterization of in situ fibre digestion of several fibrous foods. Animal Science 68: 217221.Google Scholar
FEDNA. 1999. Normas FEDNA para la formulación de piensos compuestos (ed. de Blas, J. C. García-Rebollar, P. and Mateos, G. G.). FEDNA, Madrid, Spain.Google Scholar
García, A. I., García, J., Blas, J. C.de, Piquer, J. and Carabaño, R. 1997. Efecto de la fuente de fibra sobre la actividad enzimática de la amilasa pancreática y las sacarasas en yeyuno e íleon. Información Técnica Económica Agraria 18: 190192.Google Scholar
García, J., Carabaño, R. and Blas, J. C. de. 1999. Effect of fiber source on cell wall digestibility and rate of passage in rabbits. Journal of Animal Science 77: 898905.CrossRefGoogle ScholarPubMed
García, J., Carabaño, R., Pérez-Alba, L. and Blas, J. C. de. 2000a. Effect of fiber source on cecal fermentation and nitrogen recycled through cecotrophy in rabbits. Journal of Animal Science 78: 638646.CrossRefGoogle ScholarPubMed
García, J., Gidenne, T., Falcao-e-Cunha, L. and Blas, C. de. 2001.Activité fermentaire caecale du lapin: identification de quelques facteurs de contrôle. Proceedings of the ninth Journées de la Recherche Cunicole (ed. Bolet, G.). INRA, ITAVI, Paris.Google Scholar
Grcía, J., Nicodemus, N., Carabaño, R. and Blas, J. C.de. 2002. Effect of inclusion of defatted grape seed meal in the diet on digestion and performance of growing rabbits. Journal of Animal Science 80: 162170.Google Scholar
García, J., Nicodemus, N., Espinosa, A., Pérez-Alba, L., Blas, J. C.de and Carabaño, R. 2000b. Effect of inclusion of grape-seed meal on disaccharidase activity in the small intestine of growing rabbits. World Rabbit Science 8: (suppl. 1) 217223.Google Scholar
García, J., Nicodemus, N., Pérez-Alba, L., Carabaño, R. and Blas, J. C.de. 2000c. Characterization of fibre digestion of grape-seed meal and sunflower hulls in rabbits. I. Fibre digestibility and rate of passage. World Rabbit Science 8: (suppl. 1) 225231.Google Scholar
García, J., Villamide, M. J. and Blas, J. C. de. 1996. Energy, protein and fibre digestibility of sunflower hulls, olive leaves and NaOH-treated barley straw for rabbits. World Rabbit Science 4: 205209.Google Scholar
Gidenne, T., Arveux, P. and Madec, O. 2001. The effect of the quality of dietary lignocelullose on digestion, zootechnical performance and health of the growing rabbit. Animal Science 73: 97104.Google Scholar
Goering, H. K. and Van Soest, P. J. 1970. Forage fiber analysis (apparatus, reagents, procedures, and some applications). Agricultural handbook no. 379, ARS, USDA, Washington, DC.Google Scholar
Hampson, D. J. and Kidder, D. E. 1986. Influence of creep feeding and weaning on brush border enzyme activities in the piglet small intestine. Research in Veterinary Science 40: 2431.CrossRefGoogle ScholarPubMed
Henning, S. J. 1985. Ontogeny of enzymes in the small intestine. Annual Review of Physiology 47: 231245.CrossRefGoogle ScholarPubMed
Nicodemus, N., Carabaño, R., García, J., Méndez, J. and Blas, J. C.de. 1999. Performance response of lactating and growing rabbits to dietary lignin content. Animal Feed Science and Technology 80: 4354.CrossRefGoogle Scholar
Perez, J. M., Gidenne, T., Lebas, F., Caudron, Y., Arveux, P., Boudillon, A., Duperray, J. and Messager, B. 1994. Apports de lignines et alimentation du lapin en croissance. 2. Conséquences sur les performances et la mortalité. Annales de Zootechnie 43: 323332.Google Scholar
Sernka, T. J. 1974. Gastrointestinal mucosal metabolism. In Gastrointestinal physiology, vol. 4 (ed. Guyton, A. C. Jacobson, E. D. and Shanbour, L. L.), pp. 4568. Butterworths, University Park Press, Baltimore.Google Scholar
Spanish Royal Decree 223/88. 1988. Sobre protección de los animales utilizados para experimentación y otros fines científicos. Boletín Oficial del Estado 67: 85098511.Google Scholar
Tang, M., Laarveld, B., Van Kessel, A. G., Hamilton, D. L., Estrada, A. and Patience, J. F. 1999. Effect of segregated early weaning on postweaning small intestinal development in pigs. Journal of Animal Science 77: 31913200.CrossRefGoogle ScholarPubMed
Van Soest, J. P., Robertson, J. B. and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 35833597.CrossRefGoogle ScholarPubMed