Published online by Cambridge University Press: 02 September 2010
A study was conducted to examine the effect of fine grinding or sodium hydroxide treatment of wheat, and increasing concentrate food level, on milk production. Two concentrates based either on ground wheat (450 g/kg, GW) or sodium hydroxide treated wheat (500 g/kg, SW) were offered at four concentrate levels of 2·5, 5·0, 7·5 and 10·0 kg dry matter (DM) per day to 24 dairy cows in a three-period, change-over design experiment. On average, across all concentrate food levels, silage DM intake was significantly (P < 0·01) higher with the SW concentrates, reflecting a significantly lower silage substitution rate with SW relative to GW concentrates (P < 0·01). Milk yield was also significantly higher with the SW concentrates (P < 0·05), although marginal responses to increased concentrate food level were similar (P > 0·05). Milk protein concentration increased linearly with increasing concentrate food level (P < 0·001), with a significantly greater response with the GW relative to the SW concentrate (0·59 v. 0·24 g/kg (P < 0·05) increase per kg additional concentrate). However, milk protein concentration was also significantly lower with the GW concentrate at low food levels (P < 0·05). Milk fat concentrations were similar with the two concentrate types with significant reductions in milk fat concentration with increasing concentrate food level (P < 0·05). Blood urea (P < 0·001) and β-hydroxybutyrate (P < 0·05) concentrations were significantly lower in animals offered the SW concentrate. Apparent digestibility coefficients were unaffected by either concentrate type or concentrate food level (P > 0·05), although modified acid-detergent fibre apparent digestibility was significantly reduced with increasing concentrate food level (P < 0·001). Results indicate that, at similar levels of concentrate feeding, silage intake and milk yield were significantly greater with SW compared with GW concentrates (P < 0·05 or greater). Increases in milk protein concentration with increasing concentrate food level were significantly greater with GW than with SW concentrates (P < 0·05).