Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T00:14:48.989Z Has data issue: false hasContentIssue false

Comparative determination of beta-adrenergic receptors in muscle, heart and backfat of Piétrain and Large White pigs

Published online by Cambridge University Press:  02 September 2010

E. Böcklen
Affiliation:
Institute of Zoophysiology and Institute for Animal Husbandry and Animal Breeding, University of Hohenheim, D 7000 Stuttgart 70, West Germany
S. Flad
Affiliation:
Institute of Zoophysiology and Institute for Animal Husbandry and Animal Breeding, University of Hohenheim, D 7000 Stuttgart 70, West Germany
E. Müller
Affiliation:
Institute of Zoophysiology and Institute for Animal Husbandry and Animal Breeding, University of Hohenheim, D 7000 Stuttgart 70, West Germany
H. von Faber
Affiliation:
Institute of Zoophysiology and Institute for Animal Husbandry and Animal Breeding, University of Hohenheim, D 7000 Stuttgart 70, West Germany
Get access

Abstract

The number of beta-adrenergic receptors which influence the effectiveness of catecholamines was determined by 3H-dihydro-alprenolol in muscle, heart and fat tissue of stress-susceptible pigs (Pietrains) and non-susceptible pigs (Large Whites). In all investigated tissues proportionately 0·31 to 0·38 more receptors were found in the Pietrains than in the Large Whites, the differences being significant (P < 0·05). That the higher numbers of beta-adrenergic receptors in Pietrain pigs may be involved in accelerated muscle glycogenolysis (poor meat quality) and increased lipolysis (low carcass fat) in these animals and in other breds showing poor meat quality and low carcass fat is discussed.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, R. W., Williams, L. F. and Lefkowitz, R. J. 1975. Identification of cardiac fS-adrenergic receptors by /–]–[3H] alprenolol binding. Proceedings of the National Academy of Sciences of the United States of America 72: 15641568.CrossRefGoogle ScholarPubMed
Althen, T. G., Ono, K. and Topel, D. G. 1977. Effect of stress susceptibility or stunning method on catecholamine levels in swine. Journal of Animal Science 44: 985989.Google Scholar
Altrogge, D. M., Topel, D. G., Cooper, M. A., Hallberg, J. W. and Draper, D. D. 1980. Urinary and caudate nuclei catecholamine levels in stresssusceptible and normal swine. Journal of Animal Science 51: 7477.Google Scholar
Bilezikian, J. P. and Loeb, J. N. 1983. The influence of hyperthyroidism and hypothyroidism on alpha- and beta-adrenergic receptor systems and adrenergic responsiveness. Endocrine Reviews 4: 378388.CrossRefGoogle ScholarPubMed
BöCklen, E. 1984. Bestimmung von beta-adrenergen Rezeptoren an Adipozytenmembranen von Ratten sowie Pietrain- und Edelschweinen. Dissertation, University of Hohenheim, Stuttgart.Google Scholar
Carroll, N. V., Longley, R. M. and Roe, J. H. 1956. The determination of glycogen in liver and muscle by use of anthrone reagent. Journal of Biological Chemistry 220: 583593.Google Scholar
Eggstein, M. and Kuhlmann, E. 1974. Triglyzeride und glyzerin. In Methoden der Enzymalischen Analyse. 3. Aufl., Bd. II. (ed. Bergmeyer, H. U.), Verlag Chemie, Weinheim, German Democratic Republic.Google Scholar
Fan, C. C. and Ho, R. 1981. Response of white adipocyte of mouse and rabbit to catecholamine and ACTH. Molecular and Cellular Biochemistry 34: 5158.CrossRefGoogle ScholarPubMed
Flad, S. 1984. Charakterisierung der beta-adrenergen Rezeptoren im Herzmuskel und M. longissimus von Pietrain- und Large-White-Schweinen sowie Sprague- Dawley-Ratten. Dissertation, University of Hohenheim, Stuttgart.Google Scholar
Guidicelli, Y. 1978. Thyroid-hormone modulation of the number of beta-adrenergic receptors in rat fat cell membranes. Biochemical Journal 176: 10071010.Google Scholar
Harms, H. H., Zaagsma, J. and Van Der Val, B. 1974. Beta-adrenoceptor studies. On the betaadrenoceptors in rat adipose tissue. European Journal of Pharmacology 25: 8791.CrossRefGoogle ScholarPubMed
Jacobs, K. H., Bohme, E. and Schultz, G. 1975. Determination of cyclic GMP in biological material. In Regulation of Function and Growth of Eukaryotic Cells by Intracellular Cyclic Nucleotides (ed. Dumont, J. E., Butcher, R. W. and Brown, B., Plenum, New York.Google Scholar
Lefkowitz, R. J. 1979. Direct binding studies of adrenergic receptors. Biochemical, physiologic and clinical implications. Annals of Internal Medicine 91: 450458.CrossRefGoogle ScholarPubMed
Malbon, C. and Cabelli, R. 1978. Evaluation on the negative cooperativity model for fat cell beta-adrenergic receptors. Biochimica et Biophysica Acta 544: 93101.CrossRefGoogle ScholarPubMed
Mersmann, H. 1984a. Specifity of beta-adrenergic control of lipolysis in swine adipose tissue. Comparative Biochemistry and Physiology C 77: 3942.Google ScholarPubMed
Mersmann, H. 1984b. Adrenergic control of lipolysis in swine adipose tissue. Comparative Biochemistry and Physiology C 77: 4353.Google Scholar
Muller, E. and Faber, H. V. 1985. Vergleichende Untersuchungen zum Schilddriisenstatus bei Pietrainund Large-White Schweinen im Hinblick auf die Fleischbeschaffenheit. Zeitschrift fiir Tierphysiologie Tierernahrung und Futtermittelkunde 53: 134138.Google Scholar
Ono, K., Topel, D. G., Christian, L. L. and Althen, T. G. 1977. Relationship of cyclic AMP and phosphorylase a in stress-susceptible and control pigs. Journal of Food Science 42: 108110.CrossRefGoogle Scholar
Rodbell, M. 1964. Metabolism of isolated fat cells. Effects of hormones on glucose metabolism and lipolysis. Journal of Biological Chemistry 239: 375380.CrossRefGoogle ScholarPubMed
Rogdakis, E., Ensinger, U. and Faber, H. V. 1979a. Konzentration von camp in M. long, dorsi bei Pietrains und Edelschweinen. Zuchtungskunde 51: 4851.Google Scholar
Rogdakis, E., Ensinger, U. and Faber, H. V. 1979b. Hormonspiegel im Plasma und Enzymaktivitaten im Fettgewebe von- Pietrain- und Edelschweinen. Zeitschrift fiir Tierzuchtung und Zuchtungsbiologie 96: 108119.Google Scholar
Rothfuss, U. 1981. Lipogene und lipolytische Parameter im Fettgewebe von Large White- und Piétrainschweinen in Abhangigkeit vom Mastgewicht. Dissertation, University of Hohenheim, Stüttgart.Google Scholar
Sachs, L. 1978. Angewandte Statistik. Springer Verlag, Berlin.CrossRefGoogle Scholar
Scatchard, G. 1949. The attractions of protein for small molecules and ions. Annals of the New York Academy of Sciences 51: 660672.CrossRefGoogle Scholar
Schmitten, F. 1982. Stressanfalligkeit und Fleischbeschaffenheit beim Schwein. Tierziichter 34: 162164.Google Scholar
Smith, P. W. and Clark, G. F. 1980. (3-Adrenergic receptor-adenylate cyclase alterations during the postnatal development of skeletal muscle. Biochimica et Biophysica Ada 663: 274288.Google Scholar
Stiles, G. L., Caron, M. G. and Lefkowitz, R. J. 1984. P-Adrenergic receptors: Biochemical Mechanisms of physiological regulation. Physiological Reviews 64: 661743.CrossRefGoogle Scholar
Wei, J. W. and Sulakhe, P. V. 1980. Identity of [3H] dihydroalprenolol binding sites and beta2-adrenergic receptors coupled with adenylate cyclase in guinea-pig skeletal muscle sarcolemma: general properties and structure-activity relationships. Journal of Pharmacology and Experimental Therapeutics 214: 186196.Google Scholar
Williams, L. T., Jarett, L. and Lefkowitz, R. J. 1976. Adipocyte (5-adrenergic receptors. Identification and subcellular localization by (–)–(3H) dihydroalprenolol. Journal of Biological Chemistry 251: 30964009.Google Scholar