Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T19:57:18.408Z Has data issue: false hasContentIssue false

Carcass and muscle characteristics of beef cull cows between 4 and 9 years of age

Published online by Cambridge University Press:  09 March 2007

C. Jurie*
Affiliation:
Unité de Recherches sur les Herbivores, Centre Clermont-Ferrand – Theix, 63122 Saint-Genès, Champanelle, France
J-F. Martin
Affiliation:
Qualité des Produits Animaux INRA, Centre Clermont-Ferrand – Theix, 63122 Saint-Genès, Champanelle, France
A. Listrat
Affiliation:
Unité de Recherches sur les Herbivores, Centre Clermont-Ferrand – Theix, 63122 Saint-Genès, Champanelle, France
R. Jailler
Affiliation:
Unité de Recherches sur les Herbivores, Centre Clermont-Ferrand – Theix, 63122 Saint-Genès, Champanelle, France
J. Culioli
Affiliation:
Qualité des Produits Animaux INRA, Centre Clermont-Ferrand – Theix, 63122 Saint-Genès, Champanelle, France
B. Picard
Affiliation:
Unité de Recherches sur les Herbivores, Centre Clermont-Ferrand – Theix, 63122 Saint-Genès, Champanelle, France
*
Get access

Abstract

The effects of age and breed on carcass and muscle characteristics of cull cows slaughtered at the same fattening state between 4 and 9 years of age were analysed in four French breeds: Aubrac (AU), Charolais (CH), Limousin (LI), and Salers (SA). Muscle characteristics were determined in three muscles: longissimus thoracis (LT), semitendinosus (ST) and triceps brachii (TB). They included: (1) the % frequency, cross-sectional area and % area of the different fibre types classified according to their contraction rate and metabolic properties (slow twitch oxidative (SO), fast twitch oxidative glycolytic (FOG) and fast twitch glycolytic (FG)), (2) the isocitrate dehydrogenase (ICDH) and lactate dehydrogenase (LDH) activities, representative of oxidative and glycolytic metabolism respectively, and (3) the total and insoluble collagen contents. Whatever the age of the animals at slaughter, the same carcass composition, fibre characteristics (% frequency, area, % area) and metabolic enzyme activities were obtained whatever the muscles considered. In contrast, important differences between breeds were observed in carcass composition (muscle, fat, bone) and enzyme activities. CH cows presented the highest final live weight and LI carcasses were characterized by higher muscle weight, lower fat and bone weights and more glycolytic muscles. Among the muscle characteristics, collagen was the most influenced by age and breed in a breed and muscle dependent manner respectively. AU and LI cows exhibited lower total and insoluble collagen contents than CH and SA cows, particularly at 6 to 7 years of age and for the LT and ST muscles. Thus collagen could explain an important part of the variability in meat quality from cull cows. In conclusion, results of this study provide consistent data on muscle characteristics of cull cows, few studies were available until then.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agabriel, J., Giraud, J. M. and Petit, M. 1986. Détermination et utilisation de la note d'engraissement en élevage allaitant. Bulletin Technique du CRZV de Theix INRA 66: 4350.Google Scholar
Boleman, S. J., Miller, R. K., Buyck, M. J., Cross, H. R. and Savell, J. W. 1996. Influence of realimentation of mature cows on maturity, color, collagen solubility, and sensory characteristics. Journal of Animal Science 74: 21872194.CrossRefGoogle ScholarPubMed
Brandstetter, A. M., Picard, B. and Geay, Y. 1998. Muscle fibre characteristics in four muscles of growing bulls. I. Postnatal differenciation. Livestock Production Science 53: 1523.CrossRefGoogle Scholar
Cranwell, C. D., Unruh, J. A., Brethour, J. R. and Simms, D. D. 1996a. Influence of steroid implants and concentrate feeding on carcass and longissimus muscle sensory and collagen characteristics of cull beef cows. Journal of Animal Science 74: 17771783.CrossRefGoogle ScholarPubMed
Cranwell, C. D., Unruh, J. A., Brethour, J. R., Simms, D. D. and Campbell, R. E. 1996b. Influence of steroid implants and concentrate feeding on performance and carcass composition of cull beef cows. Journal of Animal Science 74: 17701776.CrossRefGoogle ScholarPubMed
Cross, H. R., Schenbacher, B. D. and Crouse, J. D. 1984b. Sex, age and breed related changes in bovine testosterone and intramuscular collagen. Meat Science 10: 187195.CrossRefGoogle ScholarPubMed
Dransfield, E., Martin, J.-F., Bauchart, D., Abouelkaram, S., Lepetit, J., Culioli, J., Jurie, C. and Picard, B. 2003. Meat quality and composition of three muscles from French cull cows and young bulls. Animal Science 76: 387399.CrossRefGoogle Scholar
Gerhardy, H. 1995. Quality of beef from commercial fattening systems in northern Germany. Meat Science 40: 103120.CrossRefGoogle ScholarPubMed
Guth, L. and Samaha, F. J. 1970. Procedure for the histochemical demonstration of actomyosin ATPase. Experience Neurology 28: 365367.CrossRefGoogle ScholarPubMed
Jurie, C., Martin, J. F., Listrat, A., Jailler, R., Culioli, J. and Picard, B. 2005. Effects of age and breed of beef bulls on growth parameters, carcass and muscle characteristics. Animal Science 80: 257263.CrossRefGoogle Scholar
Jurie, C., Robelin, J., Picard, B., Renand, G. and Geay, Y. 1995. Postnatal changes in the biological characteristics of semitendinosus muscle in male Limousin cattle. Meat Science 41: 125135.CrossRefGoogle ScholarPubMed
Kadi, F., Karlsson, C., Larsson, B., Eriksson, J., Larval, M., Billig, H. and Jonsdottir, I. H. 2002. The effects of physical activity and estrogen treatment on rat fast and slow skeletal muscles following ovariectomy. Journal of Muscle Research and Cell Motility 23: 335339.CrossRefGoogle ScholarPubMed
Lexell, J. and Downham, D. 1992. What is the effect of ageing on type 2 muscle fibres? Journal of Neurological Science 107: 250251.CrossRefGoogle ScholarPubMed
Liénard, G., Lherm, M., Pizaine, M. C., Le Maréchal, J. Y., Boussange, B., Barlet, D., Esteve, P. and Bouchy, R. 2002. Productivité de trois races bovines françaises, Limousine, Charolaise et Salers. INRA Productions Animales 15: 293312.CrossRefGoogle Scholar
Listrat, A., Rakadjiyski, N., Jurie, C.Picard, B., Touraille, C. and Geay, Y. 1999. Effect of the type of diet on muscle characteristics and meat palatability of growing Salers bulls. Meat Science 53: 115124.CrossRefGoogle ScholarPubMed
Maltin, C. A., Sinclair, K. D., Warriss, P. D., Grant, C. M., Porter, A. D., Delday, M. I. and Warkup, C. C. 1998. The effects of age at slaughter, genotype and finishing system on the biochemical properties, muscle fibre type characteristics and eating quality of bull beef from suckled calves. Animal Science 66: 341348.CrossRefGoogle Scholar
Oddy, V. H., Harper, G. S., Greenwood, P. L. and McDonagh, M. B. 2001. Nutritional and developmental effects on the intrinsic properties of muscles as they relate to the eating quality of beef. Australian Journal of Experimental Agriculture 41: 921942.CrossRefGoogle Scholar
Peter, J. B., Barnard, R. J., Edgerton, V. R., Gillepsie, C. A. and Stempel, K. E. 1972. Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry 11: 26272633.CrossRefGoogle Scholar
Picard, B., Duris, M. P. and Jurie, C. 1998. Classification of bovine muscle fibres by different histochemical techniques. Histochemical Journal 30: 473479.CrossRefGoogle ScholarPubMed
Robelin, J. and Geay, Y. 1975. Estimation de la composition des carcasses de jeunes bovins à partir de la composition d'un morceau monocostal prélevé au niveau de la 11 ème côte. I. Composition anatomique de la carcasse. Annales de Zootechnie 24: 391402.CrossRefGoogle Scholar
Schnell, T. D., Belk, K. E., Tatum, J. D., Miller, R. K. and Smith, G. C. 1997. Performance, carcass, and palatability traits for cull cows fed high-energy concentrate diets for 0, 14, 28, 42, or 56 days. Journal of Animal Science 75: 11951202.CrossRefGoogle ScholarPubMed
Smith, S. H. and Judge, M. D. 1991. Relationship between pyridinoline concentration and thermal stability of bovine intramuscular collagen. Journal of Animal Science 69: 19891993.CrossRefGoogle ScholarPubMed
Statistical Analysis Systems Institute 1996. SAS/STAT guide for personal computers. SAS Institute Inc. Cary, NC.Google Scholar
Wegner, J., Albrecht, E., Fieldler, I., Teuscher, F., Papstein, H.-J. and Ender, K. 2000. Growth- and breed-related changes of muscle fiber characteristics in cattle. Journal of Animal Science 78: 14851496.CrossRefGoogle ScholarPubMed