Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-20T00:03:35.960Z Has data issue: false hasContentIssue false

Allometric association between in vivo estimation of body composition during growth using deuterium dilution technique and chemical analysis of serial slaughtered pigs

Published online by Cambridge University Press:  09 March 2007

S. Landgraf
Affiliation:
Institute of Animal Breeding and Husbandry, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany
A. Susenbeth
Affiliation:
Institute of Animal Nutrition, Physiology and Metabolism, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Strasse 9, 24098, Kiel, Germany
P. W. Knap
Affiliation:
PIC International Group, Ratsteich 31, 24837, Schleswig, Germany
H. Looft
Affiliation:
PIC International Group, Ratsteich 31, 24837, Schleswig, Germany
G. S. Plastow
Affiliation:
PIC International Group, Ratsteich 31, 24837, Schleswig, Germany
E. Kalm
Affiliation:
Institute of Animal Breeding and Husbandry, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany
R. Roehe*
Affiliation:
Institute of Animal Breeding and Husbandry, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany
*
Present address: Sustainable Livestock Systems, Scottish Agricultural College, Bush Estate, Penicuik EH26 0PH, UK. E-mail: [email protected]
Get access

Abstract

The objective of this study was to develop accurate mathematical-statistical functions to estimate body composition of live pigs between 20 and 140 kg weight from total body water (TBWA) determined by the deuterium dilution technique. Chemical body compositions during the growth period are essential input parameters for biological pig growth models, which are used to estimated the nutrient requirements, improve the entire production system, determine optimal slaughter weight, optimize selection for food intake, etc. In the present study, 48 pigs (17 female and 31 castrated males) were used in an experimental station to obtain protein, lipid, ash and water content at 20, 30, 60, 90, 120 and 140 kg live weight. At each target weight, body water of the animals was determined by the deuterium dilution technique. Eight pigs of each live-weight group were slaughtered and chemically analysed. Water content of the empty body decreased from 74 to 53%, whereas lipid content rose from 7 to 30%. Between 20 and 30 kg body weight, protein content increased from 16 to 17% and thereafter decreased to 16%. Ash content was constant at 3%. To estimate body composition of the remaining animals from TBWA (%) determined by deuterium dilution technique, two sets of exponential prediction functions were used to describe the relationship between chemically analysed body components and TBWA (%). The first set of prediction functions fitted one intercept for the entire growth period and the second set of prediction functions fitted a different intercept for each weight class. Correlation coefficients between estimated and chemically determined empty body water, lipid, protein and ash for the first set of functions were 0·93, 0·86, 0·83 and 0·65, respectively. The second set of prediction functions showed higher accuracy (2 to 10%), but had the disadvantage of non-continuous estimates over the entire growth period. In contrast, by using the first set of prediction functions, a continuous accurate estimation of body composition of live pigs was obtained over a large range of growth (20 to 140 kg) based on deuterium dilution space.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akridge, J. T., Brorsen, B. W., Whipker, C. D., Forrest, J. C., Kuei, C. H. and Schinckel, A. P. 1992. Evaluation of alternative techniques to determine pork carcass value. Journal of Animal Science 70: 1828.CrossRefGoogle ScholarPubMed
Association of Official Analytical Chemists. 1999. Official methods of analysis, 16th edition. AOAC, Arlington, VA.Google Scholar
Byers, F. M. 1979. Extraction and measurement of deuterium oxide at tracer levels in biological fluids. Analytical Biochemistry 98: 208213.CrossRefGoogle ScholarPubMed
De Lange, C. F. M., Morel, P. C. H. and Birkett, S. H. 2003. Modeling chemical and physical body composition of the growing pig. Journal of Animal Science 81: (E. suppl. 2)E159E165.Google Scholar
De Vries, A. G. and Kanis, E. 1992. A growth model to estimate economic values for food intake capacity in pigs. Animal Production 55: 241246.Google Scholar
Eissen, J. J. 2000. Breeding for feed intake capacity in pigs. Doctoral thesis, The Netherlands.Google Scholar
Ferrell, C. L. and Cornelius, S. G. 1984. Estimation of body composition of pigs. Journal of Animal Science 58: 903912.CrossRefGoogle ScholarPubMed
Fontaine, J., Bech-Andersen, S., Bütikofer, U. and De Froidmount-Görtz, I. 1998. Determination of thryptophan in feed by HPLC–development of an optimal hydrolysis and extraction procedure by the EU Commission DG XII in three international collaborative studies. Agribiological Research 51: 97108.Google Scholar
Gesellschaft für Ernährungsphysiologie. 1987. Empfehlungen zur Energie und Nährstoffversorgung der Schweine. DLG-Verlag, Frankfurt/Main, Germany.Google Scholar
Gu, Y., Schinckel, A. P. and Martin, T. G. 1992. Growth, development and carcass composition in five genotypes of swine. Journal of Animal Science 70: 17191729.CrossRefGoogle ScholarPubMed
Gütte, J. O., Heunisch, E. and Heine, T. 1978. Untersuchung zum Einfluß unterschiedlicher Energieversorgung auf Wachstum, Futterverwertung und Zusammensetzung des Körpers von Schweinen. 2. Mitteilung. Die anatomische und chemische Zusammensetzung des Körpers. Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 42: 99108.CrossRefGoogle Scholar
Hörnicke, H. 1959. Methoden zur Bestimmung der Körperzusammensetzung lebender Tiere unter besonderer Brücksichtigung des Schweines. Habilitation thesis. Published in: Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 16: 237–241, 267–297, 331–344, 344–366 (1961); 17: 28–60 (1962).Google Scholar
Huxley, J. S. 1932. Problems of relative growth. Methuen, London.Google Scholar
Knap, P. W., Roehe, R., Kolstad, K., Pomar, C. and Luiting, P. 2003. Characterization of pig genotypes for growth modeling. Journal of Animal Science 81: (E. suppl. 2)E187E195.Google Scholar
Knudson, B. J. 1986. Estimation of in vivo body composition in sows following weaning. M.Sc. thesis, University of Minnesota, St Paul.Google Scholar
Knudson, B. J. (1990) Influence of bioenergetics on metabolite levels, body composition and reproduction performance of female swine. Ph.D. dissertation, University of Minnesota, St Paul.Google Scholar
Möhn, S. and De Lange, C. F. M. 1998. The effect of body weight on upper limit to protein deposition in a defined population of growing gilts. Journal of Animal Science 76: 124133.CrossRefGoogle Scholar
Moughan, P. J. 2003. Simulating the partitioning of dietary amino acids: New directions. Journal of Animal Science 81 E. suppl. 2E60E67.Google Scholar
Moughan, P. J. and Verstegen, M. W. A. 1988. The modelling of growth in the pig. Netherlands Journal of Agricultural Science 36: 145166.CrossRefGoogle Scholar
Moulton, C. R. 1923. Age and chemical development in mammals. Journal of Biological Chemistry 57: 7997.CrossRefGoogle Scholar
Naumann, C., Bassler, R., Seibold, R. and Barth, C. 1997. Die chemische Untersuchung von Futtermitteln. In Methodenbuch Band III, Verband Deutscher Landwirtschaftlicher Untersuchungs und Forschungsanstalten (VDLUFA). VDLUFA Verlag, Darmstadt.Google Scholar
Pinson, E. A. 1952. Water exchanges and barriers as studied by the use of hydrogen isotopes. Physiological Reviews 32: 123.CrossRefGoogle ScholarPubMed
Pomar, C., Kyriazakis, I., Emmans, G. C. and Knap, P. W. 2003. Modeling stochasticity: Dealing with populations rather than individual pigs. Journal of Animal Science 81: (E. suppl. 2)E178E186.Google Scholar
Robelin, J. 1973. Estimation of animal body composition by labelled water diffusion spaces: review. Annales de Biologie Animale, Biochimie, Biophysique 13: 285305.CrossRefGoogle Scholar
Robelin, J. 1977. Body composition estimation with the deuterium oxide technique in male lambs. Annales de Biologie Animale, Biochimie, Biophysique 17: 95105.CrossRefGoogle Scholar
Rozeboom, D. W., Pettigrew, J. E., Moser, R. L., Cornelius, S. G. and El Kandelgy, S. M. 1994. In vivo estimation of body composition of mature gilts using live weight, backfat thickness, and deuterium oxide. Journal of Animal Science 72: 355366.CrossRefGoogle ScholarPubMed
Scheper, J. and Scholz, W. 1985. DLG-Schnittführung für die Zerlegung der Schlachtkörper von Rind, Kalb, Schwein und Schaf. Arbeitsunterlagen DLG, Frankfurt am Main.Google Scholar
ShieldsR. G., R. G., JrMahan, D. C. and Graham, P. L. 1983. Changes in swine body composition from birth to 145 kg. Journal of Animal Science 57: 4354.CrossRefGoogle Scholar
Statistical Analysis Systems Institute. 1992. SAS user's guide, version 6. SAS Institute Inc., Cary, NC.Google Scholar
Susenbeth, A. 1984. Berechnung der Körperzusammensetzung von Schweinen aus dem mit Hilfe von D2O bestimmten Körperwasser. Doctoral thesis, University of Stuttgart.Google Scholar
Tissier, M., Robelin, J., Purroy, A. and Geay, Y. 1978. Extraction and rapid automatic assay of heavy water in biological fluids. Annales de Biologie Animale, Biochimie, Biophysique 18: 12231228.CrossRefGoogle Scholar
Van Milgen, J. and Noblet, J. 2003. Partitioning of energy intake to heat, protein, and fat in growing pigs. Journal of Animal Science 81: (E. suppl. 2)E86E93.Google Scholar
Wagner, J. R., Schinckel, A. P., Chen, W., Forrest, J. C. and Coe, B. L. 1999. Analysis of body composition changes of swine during growth and development. Journal of Animal Science 77: 14421466.CrossRefGoogle ScholarPubMed
Whittemore, C. T. and Fawcett, R. H. 1976. Theoretical aspects of a flexible model to simulate protein and lipid growth in pigs. Animal Production 22: 8796.Google Scholar
Zentralverband der Deutschen Schweineproduktion. 1992. Richtlinie für die Stationsprüfung auf Mastleistung, Schlachtkörperwert und Fleischbeschaffenheit beim Schwein. Zentralverband der Deutschen Schweineproduktion e.V., Bonn.Google Scholar