Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T07:13:51.359Z Has data issue: false hasContentIssue false

Interaction between innate immunity and porcine reproductive and respiratory syndrome virus

Published online by Cambridge University Press:  29 November 2011

Yongming Sang
Affiliation:
Departments of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
Raymond R. R. Rowland
Affiliation:
Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
Frank Blecha*
Affiliation:
Departments of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
*
*Corresponding author. E-mail: [email protected]

Abstract

Innate immunity provides frontline antiviral protection and bridges adaptive immunity against virus infections. However, viruses can evade innate immune surveillance potentially causing chronic infections that may lead to pandemic diseases. Porcine reproductive and respiratory syndrome virus (PRRSV) is an example of an animal virus that has developed diverse mechanisms to evade porcine antiviral immune responses. Two decades after its discovery, PRRSV is still one of the most globally devastating viruses threatening the swine industry. In this review, we discuss the molecular and cellular composition of the mammalian innate antiviral immune system with emphasis on the porcine system. In particular, we focus on the interaction between PRRSV and porcine innate immunity at cellular and molecular levels. Strategies for targeting innate immune components and other host metabolic factors to induce ideal anti-PRRSV protection are also discussed.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afonso, CL, Piccone, ME, Zaffuto, KM, Neilan, J, Kutish, GF, Lu, Z, Balinsky, CA, Gibb, TR, Bean, TJ, Zsak, L and Rock, DL (2004). African swine fever virus multigene family 360 and 530 genes affect host interferon response. Journal of Virology 78: 18581864.CrossRefGoogle ScholarPubMed
Albina, E, Carrat, C and Charley, B (1998). Interferon-alpha response to swine arterivirus (PoAV), the porcine reproductive and respiratory syndrome virus. Journal of Interferon and Cytokine Research 18: 485490.CrossRefGoogle ScholarPubMed
Akira, S, Uematsu, S and Takeuchi, O (2006). Pathogen recognition and innate immunity. Cell 124: 783801.CrossRefGoogle ScholarPubMed
Ank, N and Paludan, SR (2009). Type III IFNs: new layers of complexity in innate antiviral immunity. BioFactors 35: 8287.CrossRefGoogle ScholarPubMed
Ank, N, West, H and Paludan, SR (2006). IFN-lambda: novel antiviral cytokines. Journal of Interferon and Cytokine Research 26: 373379.CrossRefGoogle ScholarPubMed
Appelberg, R (2007). Neutrophils and intracellular pathogens: beyond phagocytosis and killing. Trends in Microbiology 15: 8792.CrossRefGoogle ScholarPubMed
Artursson, K, Gobl, A, Lindersson, M, Johansson, M and Alm, G (1992). Molecular cloning of a gene encoding porcine interferon-beta. Journal of Interferon Research 12: 153160.CrossRefGoogle ScholarPubMed
Barchet, W, Cella, M and Colonna, M (2005). Plasmacytoid dendritic cells – virus experts of innate immunity. Seminars in Immunology 17: 253261.CrossRefGoogle ScholarPubMed
Bauhofer, O, Summerfield, A, Sakoda, Y, Tratschin, JD, Hofmann, MA and Ruggli, N (2007). Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation. Journal of Virology 81: 30873096.CrossRefGoogle ScholarPubMed
Beisswenger, C and Bals, R (2005). Antimicrobial peptides in lung inflammation. Chemical Immunology and Allergy 86: 5571.CrossRefGoogle ScholarPubMed
Beura, LK, Sarkar, SN, Kwon, B, Subramaniam, S, Jones, C, Pattnaik, AK and Osorio, FA (2010). Porcine reproductive and respiratory syndrome virus nonstructural protein 1beta modulates host innate immune response by antagonizing IRF3 activation. Journal of Virology 84: 15741584.CrossRefGoogle ScholarPubMed
Beutler, B (2004). Innate immunity: an overview. Molecular Immunology 40: 845859.CrossRefGoogle ScholarPubMed
Borghetti, P, Saleri, R, Ferrari, L, Morganti, M, De Angelis, E, Franceschi, V, Bottarelli, E and Martelli, P (2011). Cytokine expression, glucocorticoid and growth hormone changes after porcine reproductive and respiratory syndrome virus (PRRSV-1) infection in vaccinated and unvaccinated naturally exposed pigs. Comparative Immunology, Microbiology and Infectious Diseases 34: 143155.CrossRefGoogle ScholarPubMed
Borregaard, N, Sørensen, OE and Theilgaard-Mönch, K (2007). Neutrophil granules: a library of innate immunity proteins. Trends in Immunology 28: 340345.CrossRefGoogle ScholarPubMed
Bousse, T, Chambers, RL, Scroggs, RA, Portner, A and Takimoto, T (2006). Human parainfluenza virus type 1 but not Sendai virus replicates in human respiratory cells despite IFN treatment. Virus Research 121: 2332.CrossRefGoogle Scholar
Brockmeier, SL, Lager, KM, Grubman, MJ, Brough, DE, Ettyreddy, D, Sacco, RE, Gauger, PC, Loving, CL, Vorwald, AC, Kehrli, ME Jr and Lehmkuhl, HD (2009). Adenovirus-mediated expression of interferon-alpha delays viral replication and reduces disease signs in swine challenged with porcine reproductive and respiratory syndrome virus. Viral Immunology 22: 173180.CrossRefGoogle ScholarPubMed
Brukman, A and Enquist, LW (2006a). Suppression of the interferon-mediated innate immune response by pseudorabies virus. Journal of Virology 80: 63456356.CrossRefGoogle ScholarPubMed
Brukman, A and Enquist, LW (2006b). Pseudorabies virus EP0 protein counteracts an interferon-induced antiviral state in a species-specific manner. Journal of Virology 80: 1087110873.CrossRefGoogle Scholar
Buddaert, W, Van Reeth, K and Pensaert, M (1998). In vivo and in vitro interferon (IFN) studies with the porcine reproductive and respiratory syndrome virus (PRRSV). Advances in Experimental Medicine and Biology 440: 461467.CrossRefGoogle ScholarPubMed
Calzada-Nova, G, Schnitzlein, W, Husmann, R and Zuckermann, FA (2010a). Characterization of the cytokine and maturation responses of pure populations of porcine plasmacytoid dendritic cells to porcine viruses and toll-like receptor agonists. Veterinary Immunology and Immunopathology 135: 2033.CrossRefGoogle ScholarPubMed
Calzada-Nova, G, Schnitzlein, WM, Husmann, RJ and Zuckermann, FA (2010b). North American porcine reproductive and respiratory viruses inhibit type I interferon production by plasmacytoid dendritic cells. Journal of Virology 85: 27032713.CrossRefGoogle ScholarPubMed
Cao, J, Wang, X, Du, Y, Li, Y, Wang, X and Jiang, P (2010). CD40 ligand expressed in adenovirus can improve the immunogenicity of the GP3 and GP5 of porcine reproductive and respiratory syndrome virus in swine. Vaccine 28: 75147522.CrossRefGoogle ScholarPubMed
Carrasco, CP, Rigden, RC, Vincent, IE, Balmelli, C, Ceppi, M, Bauhofer, O, Tâche, V, Hjertner, B, McNeilly, F, van Gennip, HG, McCullough, KC and Summerfield, A (2004). Interaction of classical swine fever virus with dendritic cells. The Journal of General Virology 85(Pt 6): 16331641.CrossRefGoogle ScholarPubMed
Cassol, E, Cassetta, L, Alfano, M and Poli, G (2010). Macrophage polarization and HIV-1 infection. Journal of Leukocyte Biology 87: 599608.CrossRefGoogle ScholarPubMed
Cassol, E, Cassetta, L, Rizzi, C, Alfano, M and Poli, G (2009). M1 and M2a polarization of human monocyte-derived macrophages inhibits HIV-1 replication by distinct mechanisms. Journal of Immunology 182: 62376246.CrossRefGoogle ScholarPubMed
Chang, EY, Guo, B, Doyle, SE and Cheng, G (2007). Cutting edge: involvement of the type I IFN production and signaling pathway in lipopolysaccharide-induced IL-10 production. Journal of Immunology 178: 67056709.CrossRefGoogle ScholarPubMed
Chang, HW, Pang, VF, Chen, LJ, Chia, MY, Tsai, YC and Jeng, CR (2006). Bacterial lipopolysaccharide induces porcine circovirus type 2 replication in swine alveolar macrophages. Veterinary Microbiology 115: 311319.CrossRefGoogle ScholarPubMed
Chaung, HC, Chen, CW, Hsieh, BL and Chung, WB (2010). Toll-Like receptor expressions in porcine alveolar macrophages and dendritic cells in responding to poly IC stimulation and porcine reproductive and respiratory syndrome virus (PRRSV) infection. Comparative Immunology, Microbiology and Infectious Diseases 33: 197213.CrossRefGoogle ScholarPubMed
Chen, J and Subbarao, K (2007). The Immunobiology of SARS. Annual Review in Immunology 25: 443472.CrossRefGoogle ScholarPubMed
Chen, Z, Lawson, S, Sun, Z, Zhou, X, Guan, X, Christopher-Hennings, J, Nelson, EA and Fang, Y (2010a). Identification of two auto-cleavage products of nonstructural protein 1 (Nsp1) in porcine reproductive and respiratory syndrome virus infected cells: nsp1 function as interferon antagonist. Virology 398: 8797.CrossRefGoogle ScholarPubMed
Chen, Z, Zhou, X, Lunney, JK, Lawson, S, Sun, Z, Brown, E, Christopher-Hennings, J, Knudsen, D, Nelson, E and Fang, Y (2010b). Immunodominant epitopes in nsp2 of porcine reproductive and respiratory syndrome virus are dispensable for replication, but play an important role in modulation of the host immune response. The Journal of General Virology 91: 10471057.CrossRefGoogle ScholarPubMed
Chitko-McKown, CG and Blecha, F (1992). Pulmonary intravascular macrophages: a review of immune properties and functions. Annals of Veterinary Research 23: 201214.Google ScholarPubMed
Coffman, RL, Sher, A and Seder, RA (2010). Vaccine adjuvants: putting innate immunity to work. Immunity 33: 492503.CrossRefGoogle ScholarPubMed
Daffis, S, Samuel, MA, Keller, BC, Gale, M Jr and Diamond, MS (2007). Cell-specific IRF-3 responses protect against West Nile virus infection by interferon-dependent and-independent mechanisms. PLoS Pathogens 3: e106.CrossRefGoogle ScholarPubMed
Daher, KA, Selsted, ME and Lehrer, RI (1986). Direct inactivation of viruses by human granulocyte defensins. Journal of Virology 60: 10681074.CrossRefGoogle ScholarPubMed
Darwich, L, Díaz, I and Mateu, E (2010). Certainties, doubts and hypotheses in porcine reproductive and respiratory syndrome virus immunobiology. Virus Research 154: 123132.CrossRefGoogle ScholarPubMed
de Los Santos, T, de Avila Botton, S, Weiblen, R and Grubman, MJ (2006). The leader proteinase of foot-and-mouth disease virus inhibits the induction of beta interferon mRNA and locks the host innate immune response. Journal of Virology 80: 19061914.CrossRefGoogle Scholar
de Los Santos, T, Diaz-San Segundo, F and Grubman, MJ (2007). Degradation of Nuclear Factor Kappa B during Foot-and-Mouth Disease Virus Infection. Journal of Virology 81: 1280312815.CrossRefGoogle ScholarPubMed
de los Santos, T, Segundo, FD, Zhu, J, Koster, M, Dias, CC and Grubman, MJ (2009). A conserved domain in the leader proteinase of foot-and-mouth disease virus is required for proper subcellular localization and function. Journal of Virology 83: 18001810.CrossRefGoogle ScholarPubMed
de Oliveira, VL, Almeida, SC, Soares, HR, Crespo, A, Marshall-Clarke, S and Parkhouse, RM (2011). A novel TLR3 inhibitor encoded by African swine fever virus (ASFV). Archives of Virology 156: 597609.CrossRefGoogle ScholarPubMed
Devaraj, SG, Wang, N, Chen, Z, Chen, Z, Tseng, M, Barretto, N, Lin, R, Peters, CJ, Tseng, CT, Baker, SC and Li, K (2007). Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. Journal of Biological Chemistry 282: 3220832221.CrossRefGoogle ScholarPubMed
Deutsch, M and Hadziyannis, SJ (2008). Old and emerging therapies in chronic hepatitis C: an update. Journal of Viral Hepatitis 15: 211.CrossRefGoogle ScholarPubMed
Díaz, I, Darwich, L, Pappaterra, G, Pujols, J and Mateu, E (2006). Different European-type vaccines against porcine reproductive and respiratory syndrome virus have different immunological properties and confer different protection to pigs. Virology 351: 249259.CrossRefGoogle ScholarPubMed
Diaz-San Segundo, F, Moraes, MP, de Los Santos, T, Dias, CC and Grubman, MJ (2010). Interferon-induced protection against foot-and-mouth disease virus infection correlates with enhanced tissue-specific innate immune cell infiltration and interferon-stimulated gene expression. Journal of Virology 84: 20632077.CrossRefGoogle ScholarPubMed
Díaz-San Segundo, F, Rodríguez-Calvo, T, de Avila, A and Sevilla, N (2009). Immunosuppression during acute infection with foot-and-mouth disease virus in swine is mediated by IL-10. PLoS One 4: e5659.CrossRefGoogle ScholarPubMed
Ehrhardt, C, Seyer, R, Hrincius, ER, Eierhoff, T, Wolff, T and Ludwig, S (2010). Interplay between influenza A virus and the innate immune signaling. Microbes and Infection 12: 8187.CrossRefGoogle ScholarPubMed
Fang, Y and Snijder, EJ (2010). The PRRSV replicase: exploring the multifunctionality of an intriguing set of nonstructural proteins. Virus Research 154: 6176.CrossRefGoogle ScholarPubMed
Fantuzzi, L, Belardelli, F and Gessani, S (2003). Monocyte/macrophage-derived CC chemokines and their modulation by HIV-1 and cytokines: a complex network of interactions influencing viral replication and AIDS pathogenesis. Journal of Leukocyte Biology 74: 719725.CrossRefGoogle ScholarPubMed
Feng, Z, Dubyak, GR, Lederman, MM and Weinberg, A (2006). Cutting edge: human beta defensin 3–a novel antagonist of the HIV-1 coreceptor CXCR4. Journal of Immunology 177: 782786.CrossRefGoogle ScholarPubMed
Forsbach, A, Nemorin, JG, Montino, C, Müller, C, Samulowitz, U, Vicari, AP, Jurk, M, Mutwiri, GK, Krieg, AM, Lipford, GB and Vollmer, J (2008). Identification of RNA Sequence Motifs Stimulating Sequence-Specific TLR8-Dependent Immune Responses. Journal of Immunology 180: 37293738.CrossRefGoogle ScholarPubMed
Fox, BA, Sheppard, PO and O'Hara, PJ (2009). The role of genomic data in the discovery, annotation and evolutionary interpretation of the interferon-lambda family. PLoS One 4: e4933.CrossRefGoogle ScholarPubMed
García-Sastre, A and Biron, CA (2006). Type 1 interferons and the virus-host relationship: a lesson in détente. Science 312(5775): 879882.CrossRefGoogle ScholarPubMed
Gad, HH, Dellgren, C, Hamming, OJ, Vends, S, Paludan, SR and Hartmann, R (2009). Interferon-lambda is functionally an interferon but structurally related to the interleukin-10 family. Journal of Biological Chemistry 284: 2086920875.CrossRefGoogle Scholar
Gay, NJ and Gangloff, M (2007). Structure and function of Toll receptors and their ligands. Annual Review of Biochemistry 76: 141165.CrossRefGoogle ScholarPubMed
Ge, H, Wang, YF, Xu, J, Gu, Q, Liu, HB, Xiao, PG, Zhou, J, Liu, Y, Yang, Z and Su, H (2010). Anti-influenza agents from traditional Chinese medicine. Natural Product Report 27: 17581780.CrossRefGoogle ScholarPubMed
Genini, S, Delputte, PL, Malinverni, R, Cecere, M, Stella, A, Nauwynck, HJ and Giuffra, E (2008). Genome-wide transcriptional response of primary alveolar macrophages following infection with porcine reproductive and respiratory syndrome virus. Journal of General Virology 89: 25502564.CrossRefGoogle ScholarPubMed
Gil, S, Sepúlveda, N, Albina, E, Leitão, A and Martins, C (2008). The low-virulent African swine fever virus (ASFV/NH/P68) induces enhanced expression and production of relevant regulatory cytokines (IFNalpha, TNFalpha and IL12p40) on porcine macrophages in comparison to the highly virulent ASFV/L60. Archives of Virology 153: 18451854.CrossRefGoogle Scholar
Haagmans, BL and Osterhaus, AD (2006). Coronaviruses and their therapy. Antiviral Research 71: 397403.CrossRefGoogle ScholarPubMed
Haller, O and Weber, F (2007). Pathogenic viruses: smart manipulators of the interferon system. Current Topics in Microbiology and Immunology 316: 315334.Google ScholarPubMed
Hammad, H and Lambrecht, BN (2008). Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nature Reviews Immunology 8: 193204.CrossRefGoogle ScholarPubMed
Hartshorn, KL (2010). Role of surfactant protein A and D (SP-A and SP-D) in human antiviral host defense. Frontiers in Bioscience (Scholar Edition). 2: 527546.CrossRefGoogle Scholar
Haselmayer, P, Tenzer, S, Kwon, BS, Jung, G, Schild, H and Radsak, MP (2006). Herpes virus entry mediator synergizes with Toll-like receptor mediated neutrophil inflammatory responses. Immunology 119: 404411.CrossRefGoogle ScholarPubMed
Hashimoto, Y, Moki, T, Takizawa, T, Shiratsuchi, A and Nakanishi, Y (2007). Evidence for phagocytosis of influenza virus-infected, apoptotic cells by neutrophils and macrophages in mice. Journal of Immunology 178: 24482457.CrossRefGoogle ScholarPubMed
He, D, Overend, C, Ambrogio, J, Maganti, RJ, Grubman, MJ and Garmendia, AE (2011). Marked differences between MARC-145 cells and swine alveolar macrophages in IFNβ-induced activation of antiviral state against PRRSV. Veterinary Immunology and Immunopathology 139: 5760.CrossRefGoogle ScholarPubMed
Herbein, G and Varin, A (2010). The macrophage in HIV-1 infection: from activation to deactivation? Retrovirology 7: 33.CrossRefGoogle ScholarPubMed
Herber, DL, Cao, W, Nefedova, Y, Novitskiy, SV, Nagaraj, S, Tyurin, VA, Corzo, A, Cho, HI, Celis, E, Lennox, B, Knight, SC, Padhya, T, McCaffrey, TV, McCaffrey, JC, Antonia, S, Fishman, M, Ferris, RL, Kagan, VE and Gabrilovich, DI (2010). Lipid accumulation and dendritic cell dysfunction in cancer. Nature Medicine 16: 880886.CrossRefGoogle ScholarPubMed
Hoebe, K, Janssen, E and Beutler, B (2004). The interface between innate and adaptive immunity. Nature Immunology 5: 971974.CrossRefGoogle ScholarPubMed
Huang, YW and Meng, XJ (2010). Novel strategies and approaches to develop the next generation of vaccines against porcine reproductive and respiratory syndrome virus (PRRSV). Virus Research 154: 141149.CrossRefGoogle ScholarPubMed
Ieong, MH, Reardon, CC, Levitz, SM and Kornfeld, H (2000). Human immunodeficiency virus type 1 infection of alveolar macrophages impairs their innate fungicidal activity. American Journal of Respiratory and Critical Care Medicine 162: 966970.CrossRefGoogle ScholarPubMed
Iannello, A, Debbeche, O, Martin, E, Attalah, LH, Samarani, S and Ahmad, A (2006). Viral strategies for evading antiviral cellular immune responses of the host. Journal of Leukocyte Biology 79: 1635.CrossRefGoogle ScholarPubMed
Im, SS, Yousef, L, Blaschitz, C, Liu, JZ, Edwards, RA, Young, SG, Raffatellu, M and Osborne, TF (2011). Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metabolism 13: 540549.CrossRefGoogle Scholar
Iwasaki, A (2007). Mucosal dendritic cells. Annual Review of Immunology 25: 381418.CrossRefGoogle ScholarPubMed
Jung, K, Gurnani, A, Renukaradhya, GJ and Saif, LJ (2010). Nitric oxide is elicited and inhibits viral replication in pigs infected with porcine respiratory coronavirus but not porcine reproductive and respiratory syndrome virus. Veterinary Immunology and Immunopathology 136: 335339.CrossRefGoogle Scholar
Jung, K, Renukaradhya, GJ, Alekseev, KP, Fang, Y, Tang, Y and Saif, LJ (2009). Porcine reproductive and respiratory syndrome virus modifies innate immunity and alters disease outcome in pigs subsequently infected with porcine respiratory coronavirus: implications for respiratory viral co-infections. Journal of General Virology 90: 27132723.CrossRefGoogle ScholarPubMed
Kabelitz, D and Medzhitov, R (2007). Innate immunity–cross-talk with adaptive immunity through pattern recognition receptors and cytokines. Current Opinion in Immunology 19: 13.CrossRefGoogle ScholarPubMed
Kalie, E, Jaitin, DA, Podoplelova, Y, Piehler, J and Schreiber, G (2008). The stability of the ternary interferon-receptor complex rather than the affinity to the individual subunits dictates differential biological activities. Journal of Biological Chemistry 283: 3292532936.CrossRefGoogle Scholar
Karlas, A, Machuy, N, Shin, Y, Pleissner, KP, Artarini, A, Heuer, D, Becker, D, Khalil, H, Ogilvie, LA, Hess, S, Mäurer, AP, Müller, E, Wolff, T, Rudel, T and Meyer, TF (2010). Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature 463: 818822.CrossRefGoogle ScholarPubMed
Kato, A, Kiyotani, K, Kubota, T, Yoshida, T, Tashiro, M and Nagai, Y (2007). Importance of the anti-interferon capacity of Sendai virus C protein for pathogenicity in mice. Journal of Virology 81: 32643271.CrossRefGoogle ScholarPubMed
Katze, MG, Fornek, JL, Palermo, RE, Walters, KA and Korth, MJ (2008). Innate immune modulation by RNA viruses: emerging insights from functional genomics. Nature Reviews Immunology 8: 644654.CrossRefGoogle ScholarPubMed
Keirstead, ND, Lee, C, Yoo, D, Brooks, AS and Hayes, MA (2008). Porcine plasma ficolin binds and reduces infectivity of porcine reproductive and respiratory syndrome virus (PRRSV) in vitro. Antiviral Research 77: 2838.CrossRefGoogle ScholarPubMed
Kim, O, Sun, Y, Lai, FW, Song, C and Yoo, D (2010). Modulation of type I interferon induction by porcine reproductive and respiratory syndrome virus and degradation of CREB-binding protein by non-structural protein 1 in MARC-145 and HeLa cells. Virology 402: 315326.CrossRefGoogle ScholarPubMed
Kimman, TG, Cornelissen, LA, Moormann, RJ, Rebel, JM and Stockhofe-Zurwieden, N (2009). Challenges for porcine reproductive and respiratory syndrome virus (PRRSV) vaccinology. Vaccine 27: 37043718.CrossRefGoogle ScholarPubMed
Klinge, KL, Vaughn, EM, Roof, MB, Bautista, EM and Murtaugh, MP (2009). Age-dependent resistance to porcine reproductive and respiratory syndrome virus replication in swine. Virology Journal 6: 177.CrossRefGoogle ScholarPubMed
Klotman, ME and Chang, TL (2006). Defensins in innate antiviral immunity. Nature Reviews Immunology 6: 447456.CrossRefGoogle ScholarPubMed
Kojima-Shibata, C, Shinkai, H, Morozumi, T, Jozaki, K, Toki, D, Matsumoto, T, Kadowaki, H, Suzuki, E and Uenishi, H (2009). Differences in distribution of single nucleotide polymorphisms among intracellular pattern recognition receptors in pigs. Immunogenetics 61: 153160.CrossRefGoogle ScholarPubMed
König, R, Stertz, S, Zhou, Y, Inoue, A, Hoffmann, HH, Bhattacharyya, S, Alamares, JG, Tscherne, DM, Ortigoza, MB, Liang, Y, Gao, Q, Andrews, SE, Bandyopadhyay, S, De Jesus, P, Tu, BP, Pache, L, Shih, C, Orth, A, Bonamy, G, Miraglia, L, Ideker, T, García-Sastre, A, Young, JA, Palese, P, Shaw, ML and Chanda, SK (2010). Human host factors required for influenza virus replication. Nature 463: 813817.CrossRefGoogle ScholarPubMed
Kotenko, SV, Gallagher, G, Baurin, VV, Lewis-Antes, A, Shen, M, Shah, NK, Langer, JA, Sheikh, F, Dickensheets, H and Donnelly, RP (2003). IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nature Immunology 4: 6977.CrossRefGoogle ScholarPubMed
Koyama, S, Ishii, KJ, Kumar, H, Tanimoto, T, Coban, C, Uematsu, S, Kawai, T and Akira, S (2007). Differential role of TLR- and RLR-signaling in the immune responses to influenza A virus infection and vaccination. Journal of Immunology 179: 47114720.CrossRefGoogle ScholarPubMed
Kumagai, Y, Takeuchi, O, Kato, H, Kumar, H, Matsui, K, Morii, E, Aozasa, K, Kawai, T and Akira, S (2007). Alveolar macrophages are the primary interferon-alpha producer in pulmonary infection with RNA viruses. Immunity 27: 240252.CrossRefGoogle ScholarPubMed
Lawson, S, Lunney, J, Zuckermann, F, Osorio, F, Nelson, E, Welbon, C, Clement, T, Fang, Y, Wong, S, Kulas, K and Christopher-Hennings, J (2010). Development of an 8-plex luminex assay to detect swine cytokines for vaccine development: assessment of immunity after porcine reproductive and respiratory syndrome virus (PRRSV) vaccination. Vaccine 28: 53565364.CrossRefGoogle ScholarPubMed
Lee, HK and Iwasaki, A (2008). Autophagy and antiviral immunity. Current Opinion in Immunology 20: 2329.CrossRefGoogle ScholarPubMed
Lee, MS and Kim, YJ (2007). Signaling pathways downstream of pattern-recognition receptors and their crosstalk. Annual Review of Biochemistry 76: 447480.CrossRefGoogle Scholar
Lee, SM, Schommer, SK and Kleiboeker, SB (2004). Porcine reproductive and respiratory syndrome virus field isolates differ in in vitro interferon phenotypes. Veterinary Immunology and Immunopathology 102: 217231.CrossRefGoogle ScholarPubMed
Lehrer, RI (2007). Multispecific myeloid defensins. Current Opinion in Hematology 14: 1621.CrossRefGoogle ScholarPubMed
Leung, PC (2007). The efficacy of Chinese medicine for SARS: a review of Chinese publications after the crisis. American Journal of Chinese Medicine 35: 575581.CrossRefGoogle ScholarPubMed
Li, G, Jiang, P, Li, Y, Wang, X, Huang, J, Bai, J, Cao, J, Wu, B, Chen, N and Zeshan, B (2009a). Inhibition of porcine reproductive and respiratory syndrome virus replication by adenovirus-mediated RNA interference both in porcine alveolar macrophages and swine. Antiviral Research 82: 157165.CrossRefGoogle ScholarPubMed
Li, H, Zheng, Z, Zhou, P, Zhang, B, Shi, Z, Hu, Q and Wang, H (2010). The cysteine protease domain of porcine reproductive and respiratory syndrome virus non-structural protein 2 antagonizes interferon regulatory factor 3 activation. Journal of General Virology 91: 29472958.CrossRefGoogle ScholarPubMed
Li, J, Jiang, P, Li, Y, Wang, X, Cao, J, Wang, X and Zeshan, B (2009b). HSP70 fused with GP3 and GP5 of porcine reproductive and respiratory syndrome virus enhanced the immune responses and protective efficacy against virulent PRRSV challenge in pigs. Vaccine 27: 825832.CrossRefGoogle ScholarPubMed
Liu, CH, Chaung, HC, Chang, HL, Peng, YT and Chung, WB (2009). Expression of Toll-like receptor mRNA and cytokines in pigs infected with porcine reproductive and respiratory syndrome virus. Veterinary Microbiology 136: 266276.CrossRefGoogle ScholarPubMed
Longworth, KE (1997). The comparative biology of pulmonary intravascular macrophages. Frontiers in Bioscience 2: d232241.CrossRefGoogle ScholarPubMed
Loo, YM and Gale, M Jr (2007). Viral regulation and evasion of the host response. Current Topics in Microbiology and Immunology 316: 295313.Google ScholarPubMed
Loving, CL, Brockmeier, SL and Sacco, RE (2007). Differential type I interferon activation and susceptibility of dendritic cell populations to porcine arterivirus. Immunology 120: 217229.CrossRefGoogle ScholarPubMed
Loving, CL, Brockmeier, SL, Vincent, AL, Lager, KM and Sacco, RE (2008). Differences in clinical disease and immune response of pigs challenged with a high-dose versus low-dose inoculum of porcine reproductive and respiratory syndrome virus. Viral Immunology 21: 315325.CrossRefGoogle ScholarPubMed
Lu, L, Ho, Y and Kwang, J (2006). Suppression of porcine arterivirus replication by baculovirus-delivered shRNA targeting nucleoprotein. Biochemical and Biophysical Research Communications 340: 11781183.CrossRefGoogle ScholarPubMed
Ludwig, IS, Geijtenbeek, TB and van Kooyk, Y (2006). Two way communication between neutrophils and dendritic cells. Current Opinion in Pharmacology 6: 408413.CrossRefGoogle ScholarPubMed
Lunney, JK, Fritz, ER, Reecy, JM, Kuhar, D, Prucnal, E, Molina, R, Christopher-Hennings, J, Zimmerman, J and Rowland, RR (2010). Interleukin-8, interleukin-1beta, and interferon-gamma levels are linked to PRRS virus clearance. Viral Immunology 23: 127134.CrossRefGoogle ScholarPubMed
Luo, R, Fang, L, Jiang, Y, Jin, H, Wang, Y, Wang, D, Chen, H and Xiao, S (2011). Activation of NF-κB by nucleocapsid protein of the porcine reproductive and respiratory syndrome virus. Virus Genes 42: 7681.CrossRefGoogle ScholarPubMed
Luo, R, Xiao, S, Jiang, Y, Jin, H, Wang, D, Liu, M, Chen, H and Fang, L (2008). Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses interferon-beta production by interfering with the RIG-I signaling pathway. Molecular Immunology 45: 28392846.CrossRefGoogle ScholarPubMed
Martinelli, E, Cicala, C, Van Ryk, D, Goode, DJ, Macleod, K, Arthos, J and Fauci, AS (2007). HIV-1 gp120 inhibits TLR9-mediated activation and IFN-{alpha} secretion in plasmacytoid dendritic cells. Proceedings of the National Academy of Sciences of the United States of America 104: 33963401.CrossRefGoogle ScholarPubMed
Martinez, FO, Helming, L and Gordon, S (2009). Alternative activation of macrophages: an immunologic functional perspective. Annual Review of Immunology 27: 451483.CrossRefGoogle ScholarPubMed
Miller, LC, Laegreid, WW, Bono, JL, Chitko-McKown, CG and Fox, JM (2004). Interferon type I response in porcine reproductive and respiratory syndrome virus-infected MARC-145 cells. Archives of Virology 149: 24532463.CrossRefGoogle ScholarPubMed
Miller, LC, Lager, KM and Kehrli, ME Jr (2009). Role of Toll-like receptors in activation of porcine alveolar macrophages by porcine reproductive and respiratory syndrome virus. Clinical and Vaccine Immunology 16: 360365.CrossRefGoogle ScholarPubMed
Monsalvo, AC, Batalle, JP, Lopez, MF, Krause, JC, Klemenc, J, Hernandez, JZ, Maskin, B, Bugna, J, Rubinstein, C, Aguilar, L, Dalurzo, L, Libster, R, Savy, V, Baumeister, E, Aguilar, L, Cabral, G, Font, J, Solari, L, Weller, KP, Johnson, J, Echavarria, M, Edwards, KM, Chappell, JD, Crowe, JE Jr, Williams, JV, Melendi, GA and Polack, FP (2011). Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes. Nature Medicine 17: 195199.CrossRefGoogle ScholarPubMed
Munir, S, Le Nouen, C, Luongo, C, Buchholz, UJ, Collins, PL and Bukreyev, A (2008). Nonstructural proteins 1 and 2 of respiratory syncytial virus suppress maturation of human dendritic cells. Journal of Virology 82: 87808796.CrossRefGoogle ScholarPubMed
Murtaugh, MP, Stadejek, T, Abrahante, JE, Lam, TT and Leung, FC (2010). The ever-expanding diversity of porcine reproductive and respiratory syndrome virus. Virus Research 154: 1830.CrossRefGoogle ScholarPubMed
Music, N and Gagnon, CA (2010). The role of porcine reproductive and respiratory syndrome (PRRS) virus structural and non-structural proteins in virus pathogenesis. Animal Health Research Reviews 11: 135163.CrossRefGoogle ScholarPubMed
Naito, M (2008). Macrophage differentiation and function in health and disease. Pathology International 58: 143155.CrossRefGoogle ScholarPubMed
Odegaard, JI and Chawla, A (2011). Alternative Macrophage Activation and Metabolism. Annual Review in Pathology 6: 275297.CrossRefGoogle ScholarPubMed
Onoguchi, K, Yoneyama, M, Takemura, A, Akira, S, Taniguchi, T, Namiki, H and Fujita, T (2007). Viral infections activate types I and III interferon genes through a common mechanism. Journal of Biological Chemistry 282: 75767581.CrossRefGoogle ScholarPubMed
Opitz, B, Hippenstiel, S, Eitel, J and Suttorp, N (2007). Extra- and intracellular innate immune recognition in endothelial cells. Thrombosis and Haemostasis 98: 319326.Google ScholarPubMed
Pancer, Z and Cooper, MD (2006). The evolution of adaptive immunity. Annual Review in Immunology 24: 497518.CrossRefGoogle ScholarPubMed
Patel, D, Nan, Y, Shen, M, Ritthipichai, K, Zhu, X and Zhang, YJ (2010). Porcine reproductive and respiratory syndrome virus inhibits type I interferon signaling by blocking STAT1/STAT2 nuclear translocation. Journal of Virology 84: 1104511055.CrossRefGoogle ScholarPubMed
Patton, JB, Rowland, RR, Yoo, D and Chang, KO (2009). Modulation of CD163 receptor expression and replication of porcine reproductive and respiratory syndrome virus in porcine macrophages. Virus Research 140: 161171.CrossRefGoogle ScholarPubMed
Pestka, S (2007). The interferons: 50 years after their discovery, there is much more to learn. Journal of Biological Chemistry 282: 2004720051.CrossRefGoogle ScholarPubMed
Pichlmair, A and Reis e Sousa, C (2007). Innate recognition of viruses. Immunity 27: 370383.CrossRefGoogle ScholarPubMed
Qiao, S, Feng, L, Bao, D, Guo, J, Wan, B, Xiao, Z, Yang, S and Zhang, G (2011). Porcine reproductive and respiratory syndrome virus and bacterial endotoxin act in synergy to amplify the inflammatory response of infected macrophages. Veterinary Microbiology 149: 213220.CrossRefGoogle ScholarPubMed
Randolph, GJ, Jakubzick, C and Qu, C (2008). Antigen presentation by monocytes and monocyte-derived cells. Current Opinion in Immunology 20: 5260.CrossRefGoogle ScholarPubMed
Rowland, RR (2010). The interaction between PRRSV and the late gestation pig fetus. Virus Research 154: 114122.CrossRefGoogle ScholarPubMed
Rowland, RR, Robinson, B, Stefanick, J, Kim, TS, Guanghua, L, Lawson, SR and Benfield, DA (2001). Inhibition of porcine reproductive and respiratory syndrome virus by interferon-gamma and recovery of virus replication with 2-aminopurine. Archives of Virology 146: 539555.CrossRefGoogle ScholarPubMed
Saenz, SA, Noti, M and Artis, D (2010). Innate immune cell populations function as initiators and effectors in Th2 cytokine responses. Trends in Immunology 31: 407413.CrossRefGoogle ScholarPubMed
Salvatore, M, Garcia-Sastre, A, Ruchala, P, Lehrer, RI, Chang, T and Klotman, ME (2007). alpha-Defensin inhibits influenza virus replication by cell-mediated mechanism(s). Journal of Infectious Diseases 196: 835843.CrossRefGoogle ScholarPubMed
Sanders, CM, Cruse, JM and Lewis, RE (2008). Toll-like receptors, cytokines and HIV-1. Experimental and Molecular Pathology 84: 3136.CrossRefGoogle ScholarPubMed
Sang, Y and Blecha, F (2008). Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics. Animal Health Research Reviews 9: 227235.CrossRefGoogle ScholarPubMed
Sang, Y and Blecha, F (2009). Porcine host defense peptides: expanding repertoire and functions. Developmental and Comparative Immunology 33: 334343.CrossRefGoogle ScholarPubMed
Sang, Y, Ross, CR, Rowland, RR and Blecha, F (2008b). Toll-like receptor 3 activation decreases porcine arterivirus infection. Viral Immunology 21: 303313.CrossRefGoogle ScholarPubMed
Sang, Y, Rowland, RR and Blecha, F (2010b). Molecular characterization and antiviral analyses of porcine type III interferons. Journal of Interferon and Cytokine Research 30: 801807.CrossRefGoogle ScholarPubMed
Sang, Y, Rowland, RR, Hesse, RA and Blecha, F (2010a). Differential expression and activity of the porcine type I interferon family. Physiological Genomics. 42: 248258.CrossRefGoogle ScholarPubMed
Sang, Y, Ruchala, P, Lehrer, RI, Ross, CR, Rowland, RR and Blecha, F (2009). Antimicrobial host defense peptides in an arteriviral infection: differential peptide expression and virus inactivation. Viral Immunology 22: 235242.CrossRefGoogle Scholar
Sang, Y, Yang, J, Ross, CR, Rowland, RR and Blecha, F (2008a). Molecular identification and functional expression of porcine Toll-like receptor (TLR) 3 and TLR7. Veterinary Immunology and Immunopathology 125: 162167.CrossRefGoogle ScholarPubMed
Sawa, S, Cherrier, M, Lochner, M, Satoh-Takayama, N, Fehling, HJ, Langa, F, Di Santo, JP and Eberl, G (2010). Lineage relationship analysis of RORgammat+innate lymphoid cells. Science 330: 665669.CrossRefGoogle ScholarPubMed
Schlender, J, Hornung, V, Finke, S, Günthner-Biller, M, Marozin, S, Brzózka, K, Moghim, S, Endres, S, Hartmann, G and Conzelmann, KK (2005). Inhibition of toll-like receptor 7- and 9-mediated alpha/beta interferon production in human plasmacytoid dendritic cells by respiratory syncytial virus and measles virus. Journal of Virology 79: 55075515.CrossRefGoogle ScholarPubMed
Schmid, D, Dengjel, J, Schoor, O, Stevanovic, S and Münz, C (2006). Autophagy in innate and adaptive immunity against intracellular pathogens. Journal of Molecular Medicine 84: 194202.CrossRefGoogle ScholarPubMed
Sen, GC and Sarkar, SN (2007). The interferon-stimulated genes: targets of direct signaling by interferons, double-stranded RNA, and viruses. Current Topics in Microbiology and Immunology 316: 233250.Google ScholarPubMed
Sheahan, T, Morrison, TE, Funkhouser, W, Uematsu, S, Akira, S, Baric, RS and Heise, MT (2008). MyD88 is required for protection from lethal infection with a mouse-adapted SARS-CoV. PLoS Pathogens 4: e1000240.CrossRefGoogle ScholarPubMed
Sheppard, P, Kindsvogel, W, Xu, W, Henderson, K, Schlutsmeyer, S, Whitmore, TE, Kuestner, R, Garrigues, U, Birks, C, Roraback, J, Ostrander, C, Dong, D, Shin, J, Presnell, S, Fox, B, Haldeman, B, Cooper, E, Taft, D, Gilbert, T, Grant, FJ, Tackett, M, Krivan, W, McKnight, G, Clegg, C, Foster, D and Klucher, KM (2003). IL-28, IL-29 and their class II cytokine receptor IL-28R. Nature Immunology 4:6368.CrossRefGoogle ScholarPubMed
Shi, X, Wang, L, Zhi, Y, Xing, G, Zhao, D, Deng, R and Zhang, G (2010). Porcine reproductive and respiratory syndrome virus (PRRSV) could be sensed by professional beta interferon-producing system and had mechanisms to inhibit this action in MARC-145 cells. Virus Research 153: 151156.CrossRefGoogle ScholarPubMed
Shinkai, H, Muneta, Y, Suzuki, K, Eguchi-Ogawa, T, Awata, T and Uenishi, H (2006a). Porcine Toll-like receptor 1, 6, and 10 genes: complete sequencing of genomic region and expression analysis. Molecular Immunology 43: 14741480.CrossRefGoogle Scholar
Shinkai, H, Tanaka, M, Morozumi, T, Eguchi-Ogawa, T, Okumura, N, Muneta, Y, Awata, T and Uenishi, H (2006b). Biased distribution of single nucleotide polymorphisms (SNPs) in porcine Toll-like receptor 1 (TLR1), TLR2, TLR4, TLR5, and TLR6 genes. Immunogenetics 58: 324330.CrossRefGoogle ScholarPubMed
Shirey, KA, Pletneva, LM, Puche, AC, Keegan, AD, Prince, GA, Blanco, JC and Vogel, SN (2010). Control of RSV-induced lung injury by alternatively activated macrophages is IL-4R alpha-, TLR4-, and IFN-beta-dependent. Mucosal Immunology 3: 291300.CrossRefGoogle ScholarPubMed
Silva-Campa, E, Cordoba, L, Fraile, L, Flores-Mendoza, L, Montoya, M and Hernández, J (2010). European genotype of porcine reproductive and respiratory syndrome (PRRSV) infects monocyte-derived dendritic cells but does not induce Treg cells. Virology 396: 264271.CrossRefGoogle Scholar
Skalsky, RL and Cullen, BR (2010). Viruses, microRNAs, and host interactions. Annual Review of Microbiology 64: 123141.CrossRefGoogle ScholarPubMed
Song, C, Krell, P and Yoo, D (2010). Nonstructural protein 1α subunit-based inhibition of NF-κB activation and suppression of interferon-β production by porcine reproductive and respiratory syndrome virus. Virology 407: 268280.CrossRefGoogle ScholarPubMed
Spiegel, S and Milstien, S (2011). The outs and the ins of sphingosine-1-phosphate in immunity. Nature Reviews. Immunology 11: 403415.CrossRefGoogle ScholarPubMed
Stout, RD, Jiang, C, Matta, B, Tietzel, I, Watkins, SK and Suttles, J (2005). Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. Journal of Immunology 175: 342349.CrossRefGoogle ScholarPubMed
Stout, RD, Watkins, SK and Suttles, J (2009). Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages. Journal of Leukocyte Biology 86: 11051109.CrossRefGoogle ScholarPubMed
Subramaniam, S, Sur, JH, Kwon, B, Pattnaik, AK and Osorio, FA (2011). A virulent strain of porcine reproductive and respiratory syndrome virus does not up-regulate interleukin-10 levels in vitro or in vivo. Virus Research 155: 415422.CrossRefGoogle ScholarPubMed
Sulkowski, MS and Benhamou, Y (2007). Therapeutic issues in HIV/HCV-coinfected patients. Journal of Viral Hepatitis 14: 371386.CrossRefGoogle ScholarPubMed
Sun, Z, Chen, Z, Lawson, SR and Fang, Y (2010). The cysteine protease domain of porcine reproductive and respiratory syndrome virus nonstructural protein 2 possesses deubiquitinating and interferon antagonism functions. Journal of Virology 84: 78327846.CrossRefGoogle ScholarPubMed
Takaoka, A, Wang, Z, Choi, MK, Yanai, H, Negishi, H, Ban, T, Lu, Y, Miyagishi, M, Kodama, T, Honda, K, Ohba, Y and Taniguchi, T (2007). DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448(7152): 501505.CrossRefGoogle Scholar
Takaoka, A and Yanai, H (2006). Interferon signalling network in innate defence. Cellular Microbiology 8: 907922.CrossRefGoogle ScholarPubMed
Takeuchi, O and Akira, S (2007). Recognition of viruses by innate immunity. Immunological Reviews 220: 214224.CrossRefGoogle ScholarPubMed
Taylor, PR, Martinez-Pomares, L, Stacey, M, Lin, HH, Brown, GD and Gordon, S (2005). Macrophage receptors and immune recognition. Annual Review of Immunology 23: 901944.CrossRefGoogle ScholarPubMed
Teijaro, JR, Walsh, KB, Cahalan, S, Fremgen, DM, Roberts, E, Scott, F, Martinborough, E, Peach, R, Oldstone, MB and Rosen, H (2011). Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 146: 980991.CrossRefGoogle ScholarPubMed
Thanawongnuwech, R, Halbur, PG and Thacker, EL (2000). The role of pulmonary intravascular macrophages in porcine reproductive and respiratory syndrome virus infection. Animal Health Research Reviews 1: 95102.CrossRefGoogle ScholarPubMed
Thanawongnuwech, R and Suradhat, S (2010). Taming PRRSV: revisiting the control strategies and vaccine design. Virus Research 154: 133140.CrossRefGoogle ScholarPubMed
Thibault, S, Fromentin, R, Tardif, MR and Tremblay, MJ (2009). TLR2 and TLR4 triggering exerts contrasting effects with regard to HIV-1 infection of human dendritic cells and subsequent virus transfer to CD4+T cells. Retrovirology 6: 42.CrossRefGoogle ScholarPubMed
Umbach, JL and Cullen, BR (2009). The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Genes and Development 23: 11511164.CrossRefGoogle ScholarPubMed
Uzé, G, Schreiber, G, Piehler, J and Pellegrini, S (2007). The receptor of the type I interferon family. Current Topics in Microbiology and Immunology 316: 7195.Google ScholarPubMed
Van Gorp, H, Van Breedam, W, Delputte, PL and Nauwynck, HJ (2008). Sialoadhesin and CD163 join forces during entry of the porcine reproductive and respiratory syndrome virus. Journal of General Virology 89: 29432953.CrossRefGoogle ScholarPubMed
Veldhoen, M and Withers, DR (2010). Immunology. Innate lymphoid cell relations. Science 330: 594595.CrossRefGoogle ScholarPubMed
Vincent, IE, Balmelli, C, Meehan, B, Allan, G, Summerfield, A and McCullough, KC (2007). Silencing of natural interferon producing cell activation by porcine circovirus type 2 DNA. Immunology 120: 4756.CrossRefGoogle ScholarPubMed
Vivier, E, Tomasello, E, Baratin, M, Walzer, T and Ugolini, S (2008). Functions of natural killer cells. Nature Immunology 9: 503510.CrossRefGoogle ScholarPubMed
Wang, D, Fang, L, Li, T, Luo, R, Xie, L, Jiang, Y, Chen, H and Xiao, S (2008). Molecular cloning and functional characterization of porcine IFN-beta promoter stimulator 1 (IPS-1). Veterinary Immunology and Immunopathology 125: 344353.CrossRefGoogle ScholarPubMed
Wang, H, Brown, J, Garcia, CA, Tang, Y, Benakanakere, MR, Greenway, T, Alard, P, Kinane, DF and Martin, M (2011). The role of glycogen synthase kinase 3 in regulating IFN-beta-mediated IL-10 production. Journal of Immunology 186: 675684.CrossRefGoogle ScholarPubMed
Wang, X, Li, J, Jiang, P, Li, Y, Zeshan, B, Cao, J and Wang, X (2009). GM-CSF fused with GP3 and GP5 of porcine reproductive and respiratory syndrome virus increased the immune responses and protective efficacy against virulent PRRSV challenge. Virus Research 143: 2432.CrossRefGoogle ScholarPubMed
Welch, SK and Calvert, JG (2010). A brief review of CD163 and its role in PRRSV infection. Virus Research 154: 98103.CrossRefGoogle ScholarPubMed
Wen, H, Schaller, MA, Dou, Y, Hogaboam, CM and Kunkel, SL (2008). Dendritic cells at the interface of innate and acquired immunity: the role for epigenetic changes. Journal of Leukocyte Biology 83: 439446.CrossRefGoogle ScholarPubMed
West, AP, Koblansky, AA and Ghosh, S (2006). Recognition and signaling by toll-like receptors. Annual Review of Cell and Developmental Biology 22: 409437.CrossRefGoogle ScholarPubMed
White, MR, Tecle, T, Crouch, EC and Hartshorn, KL (2007). Impact of neutrophils on antiviral activity of human bronchoalveolar lavage fluid. American Journal of Physiology: Lung Cellular and Molecular Physiology 293: L12931299.Google ScholarPubMed
Wikström, FH, Fossum, C, Fuxler, L, Kruse, R and Lövgren, T (2011). Cytokine induction by immunostimulatory DNA in porcine PBMC is impaired by a hairpin forming sequence motif from the genome of Porcine Circovirus type 2 (PCV2). Veterinary Immunology and Immunopathology 139: 156166.CrossRefGoogle ScholarPubMed
Xiao, S, Jia, J, Mo, D, Wang, Q, Qin, L, He, Z, Zhao, X, Huang, Y, Li, A, Yu, J, Niu, Y, Liu, X and Chen, Y (2010b). Understanding PRRSV infection in porcine lung based on genome-wide transcriptome response identified by deep sequencing. PLoS One 5: e11377.CrossRefGoogle ScholarPubMed
Xiao, S, Mo, D, Wang, Q, Jia, J, Qin, L, Yu, X, Niu, Y, Zhao, X, Liu, X and Chen, Y (2010a). Aberrant host immune response induced by highly virulent PRRSV identified by digital gene expression tag profiling. BMC Genomics 11: 544.CrossRefGoogle ScholarPubMed
Yoo, D, Song, C, Sun, Y, Du, Y, Kim, O and Liu, HC (2010). Modulation of host cell responses and evasion strategies for porcine reproductive and respiratory syndrome virus. Virus Research 154: 4860.CrossRefGoogle ScholarPubMed
Zhang, F, Hopwood, P, Abrams, CC, Downing, A, Murray, F, Talbot, R, Archibald, A, Lowden, S and Dixon, LK (2006). Macrophage transcriptional responses following in vitro infection with a highly virulent African swine fever virus isolate. Journal of Virology 80: 1051410521.CrossRefGoogle ScholarPubMed
Zhang, X, Wang, C, Schook, LB, Hawken, RJ and Rutherford, MS (2000). An RNA helicase, RHIV -1, induced by porcine reproductive and respiratory syndrome virus (PRRSV) is mapped on porcine chromosome 10q13. Microbial Pathogenesis 28: 267278.CrossRefGoogle ScholarPubMed
Zuniga, EI, Hahm, B and Oldstone, MB (2007). Type I interferon during viral infections: multiple triggers for a multifunctional mediator. Current Topics in Microbiology and Immunology 316: 337357.Google ScholarPubMed