Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T07:54:14.402Z Has data issue: false hasContentIssue false

Biofilm formation in bacterial pathogens of veterinary importance

Published online by Cambridge University Press:  25 October 2010

Mario Jacques*
Affiliation:
Groupe de recherche sur les maladies infectieuses du porc, Faculté de Médecine Vétérinaire, Université de Montréal, C.P. 5000, Saint-Hyacinthe, Québec J2S 7C6, Canada
Virginia Aragon
Affiliation:
Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
Yannick D. N. Tremblay
Affiliation:
Groupe de recherche sur les maladies infectieuses du porc, Faculté de Médecine Vétérinaire, Université de Montréal, C.P. 5000, Saint-Hyacinthe, Québec J2S 7C6, Canada
*
*Corresponding author: E-mail: [email protected]

Abstract

Bacterial biofilms are structured communities of bacterial cells enclosed in a self-produced polymer matrix that is attached to a surface. Biofilms protect and allow bacteria to survive and thrive in hostile environments. Bacteria within biofilms can withstand host immune responses, and are much less susceptible to antibiotics and disinfectants when compared with their planktonic counterparts. The ability to form biofilms is now considered a universal attribute of micro-organisms. Diseases associated with biofilms require novel methods for their prevention, diagnosis and treatment; this is largely due to the properties of biofilms. Surprisingly, biofilm formation by bacterial pathogens of veterinary importance has received relatively little attention. Here, we review the current knowledge of bacterial biofilms as well as studies performed on animal pathogens.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agladze, K, Wang, X and Romeo, T (2005). Spatial periodicity of Escherichia coli K-12 biofilm microstructure initiates during a reversible, polar attachment phase of development and requires the polysaccharide adhesin PGA. Journal of Bacteriology 187: 82378246.CrossRefGoogle ScholarPubMed
Amalaradjou, MA, Norris, CE and Venkitanarayanan, K (2009). Effect of octenidine hydrochloride on planktonic cells and biofilms of Listeria monocytogenes. Applied and Environmental Microbiology 75: 40894092.CrossRefGoogle ScholarPubMed
Amer, LS, Bishop, BM and van Hoek, ML (2010). Antimicrobial and antibiofilm activity of cathelicidins and short, synthetic peptides against Francisella. Biochemical and Biophysical Research Communications 396: 246251.CrossRefGoogle ScholarPubMed
Anderson, GG and O'Toole, GA (2008). Innate and induced resistance mechanisms of bacterial biofilms. Current Topics in Microbiology and Immunology 322: 85105.Google ScholarPubMed
Anderson, GG, Palermo, JJ, Schilling, JD, Roth, R, Heuser, J and Hultgren, SJ (2003). Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301: 105107.CrossRefGoogle ScholarPubMed
Asha, A, Nayak, DK, Shankar, KM and Mohan, CV (2004). Antigen expression in biofilm cells of Aeromonas hydrophila employed in oral vaccination of fish. Fish and Shellfish Immunology 16: 429436.CrossRefGoogle ScholarPubMed
Auger, S, Krin, E, Aymerich, S and Gohar, M (2006). Autoinducer 2 affects biofilm formation by Bacillus cereus. Applied and Environmental Microbiology 72: 937941.CrossRefGoogle ScholarPubMed
Auger, E, Deslandes, V, Ramjeet, M, Contreras, I, Nash, JH, Harel, J, Gottschalk, M, Olivier, M and Jacques, M (2009a). Host–pathogen interactions of Actinobacillus pleuropneumoniae with porcine lung and tracheal epithelial cells. Infection and Immunity 77: 14261441.CrossRefGoogle ScholarPubMed
Auger, S, Ramarao, N, Faille, C, Fouet, A, Aymerich, S and Gohar, M (2009b). Biofilm formation and cell surface properties among pathogenic and non-pathogenic strains of the Bacillus cereus group. Applied and Environmental Microbiology 75: 66166618.CrossRefGoogle Scholar
Ballering, KS, Kristich, CJ, Grindle, SM, Oromendia, A, Beattie, DT and Dunny, GM (2009). Functional genomics of Enterococcus faecalis: multiple novel genetic determinants for biofilm formation in the core genome. Journal of Bacteriology 191: 28062814.CrossRefGoogle ScholarPubMed
Bazire, A, Shioya, K, Soum-Soutéra, E, Bouffartigues, E, Ryder, C, Guentas-Dombrowsky, L, Hémery, G, Linossier, I, Chevalier, S, Wozniak, DJ, Lesouhaitier, O and Dufour, A (2010). The sigma factor AlgU plays a key role in formation of robust biofilms by non-mucoid Pseudomonas aeruginosa. Journal of Bacteriology 192: 30013010.CrossRefGoogle Scholar
Beloin, C, Roux, A and Ghigo, JM (2008). Escherichia coli biofilms. Current Topics in Microbiology and Immunology 322: 249289.Google ScholarPubMed
Benoit, MR, Conant, CG, Ionescu-Zanetti, C, Schwartz, M and Matin, A (2010). New device for high-throughput viability screening of flow biofilms. Applied and Environmental Microbiology 76: 41364142.CrossRefGoogle ScholarPubMed
Boddey, JA, Flegg, CP, Day, CJ, Beacham, IR and Peak, IR (2006). Temperature-regulated microcolony formation by Burkholderia pseudomallei requires pilA and enhances association with cultured human cells. Infection and Immunity 74: 53745381.Google ScholarPubMed
Boles, BR, Thoendel, M, Roth, AJ and Horswill, AR (2010). Identification of genes involved in polysaccharide-independent Staphylococcus aureus biofilm formation. PLoS One 5: e10146.CrossRefGoogle ScholarPubMed
Bonifait, L, Grignon, L and Grenier, D (2008). Fibrinogen induces biofilm formation by Streptococcus suis and enhances its antibiotic resistance. Applied and Environmental Microbiology 74: 49694972.CrossRefGoogle ScholarPubMed
Bossé, JT, Sinha, S, Li, MS, O'Dwyer, CA, Nash, JH, Rycroft, AN, Kroll, JS and Langford, PR (2010). Regulation of pga operon expression and biofilm formation in Actinobacillus pleuropneumoniae by σE and H-NS. Journal of Bacteriology 192: 24142423.CrossRefGoogle ScholarPubMed
Boyen, F, Eeckhaut, V, Van Immerseel, F, Pasmans, F, Ducatelle, R and Haesebrouck, F (2009). Quorum sensing in veterinary pathogens: mechanisms, clinical importance and future perspectives. Veterinary Microbiology 135: 187195.CrossRefGoogle ScholarPubMed
Buettner, FF, Maas, A and Gerlach, G-F (2008). An Actinobacillus pleuropneumoniae arcA deletion mutant is attenuated and deficient in biofilm formation. Veterinary Microbiology 127: 106115.CrossRefGoogle ScholarPubMed
Carter, G, Young, SL and Bermudez, LE (2004). A subinhibitory concentration of clarithromycin inhibits Mycobacterium avium biofilm formation. Antimicrobial Agents and Chemotherapy 48: 49074910.CrossRefGoogle ScholarPubMed
Cegelski, L, Marshall, GR, Eldridge, GR and Hultgren, SJ (2008). The biology and future prospects of antivirulence therapies. Nature Reviews in Microbiology 6: 1727.CrossRefGoogle ScholarPubMed
Ceri, H, Olson, ME, Stremick, C, Read, RR, Morck, DW and Buret, A (1999). The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. Journal of Clinical Microbiology 37: 17711776.CrossRefGoogle ScholarPubMed
Ceri, H, Olson, ME and Turner, RJ (2010). Needed, new paradigms in antibiotic development. Expert Opinion in Pharmacotherapy 11: 12331237.CrossRefGoogle ScholarPubMed
Ciftci, A, Findik, A, Iça, T, Bas, B, Onuk, EE and Güngördü, S (2009). Slime production and antibiotic resistance of Enterococcus faecalis isolated from arthritis in chickens. Journal of Veterinary Medical Science 71: 849853.CrossRefGoogle ScholarPubMed
Clutterbuck, AL, Woods, EJ, Knottenbelt, DC, Clegg, PD, Cochrane, CA and Percival, SL (2007). Biofilms and their relevance to veterinary medicine. Veterinary Microbiology 121: 117.CrossRefGoogle ScholarPubMed
Cochrane, CA, Freeman, K, Woods, E, Welsby, S and Percival, SL (2009). Biofilms evidence and the microbial diversity of horse wounds. Canadian Journal of Microbiology 55: 197202.CrossRefGoogle Scholar
Cook, KL, Britt, JS and Bolster, CH (2010). Survival of Mycobacterium avium subsp. paratuberculosis in biofilms on livestock watering trough materials. Veterinary Microbiology 141: 103109.CrossRefGoogle ScholarPubMed
Coquet, L, Cosette, P, Quillet, L, Petit, F, Junter, GA and Jouenne, T (2002). Occurrence and phenotypic characterization of Yersinia ruckeri strains with biofilm-forming capacity in a rainbow trout farm. Applied and Environmental Microbiology 68: 470475.CrossRefGoogle Scholar
Corbeil, LB (2008). Histophilus somni host-parasite relationships. Animal Health Research Reviews 8: 151160.CrossRefGoogle Scholar
Costerton, JW, Stewart, PS and Greenberg, EP (1999). Bacterial biofilms: a common cause of persistent infections. Science 284: 13181322.CrossRefGoogle ScholarPubMed
Dalai, B, Zhou, R, Wan, Y, Kang, M, Li, L, Li, T, Zhang, S and Chen, H (2009). Histone-like protein H-NS regulates biofilm formation and virulence of Actinobacillus pleuropneumoniae. Microbial Pathogenesis 46: 128134.CrossRefGoogle ScholarPubMed
Darby, C (2008). Uniquely insidious: Yersinia pestis biofilms. Trends in Microbiology 16: 158164.CrossRefGoogle ScholarPubMed
Daubenspeck, JM, Bolland, JR, Luo, W, Simmons, WL and Dybvig, K (2009). Identification of exopolysaccharide-deficient mutants of Mycoplasma pulmonis. Molecular Microbiology 72: 12351245.CrossRefGoogle ScholarPubMed
Davies, DG and Marques, CNH (2009). A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. Journal of Bacteriology 191: 13931403.CrossRefGoogle ScholarPubMed
Deligianni, E, Pattison, SH, Berrar, D, Ternan, NG, Haylock, RW, Moore, JE, Elborn, JS and Dooley, JS (2010). Pseudomonas aeruginosa cystic fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro. BMC Microbiology 10: 38.CrossRefGoogle ScholarPubMed
Devriese, LA, Vancanneyt, M, Baele, M, Vaneechoutte, M, De Graef, E, Snauwaert, C, Cleenwerck, I, Dawyndt, P, Swings, J, Decostere, A and Haesebrouck, F (2005). Staphylococcus pseudintermedius sp. nov., a coagulase-positive species from animals. International Journal of Systematic and Evolutionary Microbiology 55: 15691573.CrossRefGoogle Scholar
Dhanawade, NB, Kalorey, DR, Srinivasan, R, Barbuddhe, SB and Kurkure, NV (2010). Detection of intercellular adhesion genes and biofilm production in Staphylococcus aureus isolated from bovine subclinical mastitis. Veterinary Research Communications 34: 8189.CrossRefGoogle ScholarPubMed
Donlan, RM and Costerton, JW (2002). Biofilms: survival mechanisms of clinically relevant microorganims. Clinical Microbiology Reviews 15: 167193.CrossRefGoogle Scholar
Dorel, C, Lejeune, P and Rodrigue, A (2006). The Cpx system of Escherichia coli, a strategic signaling pathway for confronting adverse conditions and for settling biofilm communities? Research in Microbiology 157: 306314.CrossRefGoogle ScholarPubMed
Durham-Colleran, MW, Verhoeven, AB and van Hoek, ML (2010). Francisella novicida forms in vitro biofilms mediated by an orphan response regulator. Microbial Ecology 59: 457465.CrossRefGoogle ScholarPubMed
Dürig, A, Kouskoumvekaki, I, Vejborg, RM and Klemm, P (2010). Chemoinformatics-assisted development of new anti-biofilm compounds. Applied Microbiology and Biotechnology 87: 309317.CrossRefGoogle ScholarPubMed
Fields, JA and Thompson, SA (2008). Campylobacter jejuni CsrA mediates oxidative stress responses, biofilm formation, and host cell invasion. Journal of Bacteriology 190: 34113416.CrossRefGoogle ScholarPubMed
Fox, LK, Zadoks, RN and Gaskins, CT (2005). Biofilm production by Staphylococcus aureus associated with intramammary infection. Veterinary Microbiology 107: 295299.CrossRefGoogle ScholarPubMed
Futagawa-Saito, K, Ba-Thein, W, Sakurai, N and Fukuyasu, T (2006). Prevalence of virulence factors in Staphylococcus intermedius isolates from dogs and pigeons. BMC Veterinary Research 2: 4.CrossRefGoogle ScholarPubMed
Fuxman Bass, JI, Russo, DM, Gabelloni, ML, Geffner, JR, Giordano, M, Catalano, M, Zorreguieta, A and Trevani, AS (2010). Extracellular DNA: a major proinflammatory component of Pseudomonas aeruginosa biofilms. Journal of Immunology 184: 63866395.CrossRefGoogle Scholar
Gandhi, M and Chikindas, ML (2007). Listeria: a foodborne pathogen that knows how to survive. International Journal of Food Microbiology 113: 115.CrossRefGoogle ScholarPubMed
Ganeshnarayan, K, Shah, SM, Libera, MR, Santostefano, A and Kaplan, JB (2009). Poly-N-acetylglucosamine matrix polysaccharide impedes fluid convection and transport of the cationic surfactant cetylpyridinium chloride through bacterial biofilms. Applied and Environmental Microbiology 75: 13081314.CrossRefGoogle ScholarPubMed
Gavìn, R, Rabaan, AA, Merino, S, Tomàs, JM, Gryllos, I and Shaw, JG (2002). Lateral flagella of Aeromonas species are essential for epithelial cell adherence and biofilm formation. Molecular Microbiology 43: 383397.CrossRefGoogle ScholarPubMed
Gening, ML, Maira-Litrán, T, Kropec, A, Skurnik, D, Grout, M, Tsvetkov, YE, Nifantiev, NE and Pier, GB (2010). Synthetic β-(1,6)-linked N-acetylated and nonacetylated oligoglucosamines used to produce conjugate vaccines for bacterial pathogens. Infection and Immunity 78: 764772.CrossRefGoogle ScholarPubMed
Goeres, DM, Hamilton, MA, Beck, NA, Buckingham-Meyer, K, Hilyard, JD, Loetterle, LR, Lorenz, LA, Walker, DK and Stewart, PS (2009). A method for growing a biofilm under low shear at the air–liquid interface using the drip flow biofilm reactor. Nature Protocols 4: 783788.CrossRefGoogle ScholarPubMed
Grenier, D, Grignon, L and Gottschalk, M (2009). Characterisation of biofilm formation by a Streptococcus suis meningitis isolate. Veterinary Journal 179: 292295.CrossRefGoogle ScholarPubMed
Guiton, PS, Hung, CS, Kline, KA, Roth, R, Kau, AL, Hayes, E, Heuser, J, Dodson, KW, Caparon, MG and Hultgren, SJ (2009). Contribution of autolysin and sortase A during Enterococcus faecalis DNA-dependent biofilm development. Infection and Immunity 77: 36263638.CrossRefGoogle ScholarPubMed
Gunther, NW 4th and Chen, C-Y (2009). The biofilm forming potential of bacterial species in the genus Campylobacter. Food Microbiology 26: 4451.CrossRefGoogle ScholarPubMed
Habimana, O, Meyrand, M, Meylheuc, T, Kulakauskas, S and Briandet, R (2009). Genetic features of resident biofilms determine attachment of Listeria monocytogenes. Applied and Environmental Microbiology 75: 78147821.CrossRefGoogle ScholarPubMed
Haesebrouck, F, Vanrobaeys, M, de Herdt, P and Ducatelle, R (1995). Effect of antimicrobial treatment on the course of an experimental Yersinia pseudotuberculosis infection in canaries. Avian Pathology 24: 273283.Google ScholarPubMed
Hall-Stoodley, L and Stoodley, P (2005). Biofilm formation and dispersal and the transmission of human pathogens. Trends in Microbiology 13: 710.CrossRefGoogle ScholarPubMed
Hall-Stoodley, L and Stoodley, P (2009). Evolving concepts in biofilm infections. Cellular Microbiology 11: 10341043.CrossRefGoogle ScholarPubMed
Hall-Stoodley, L, Costerton, JW and Stoodley, P (2004). Bacterial biofilms: from the natural environment to infectious diseases. Nature Reviews in Microbiology 2: 95108.CrossRefGoogle ScholarPubMed
Hancock, V, Dahl, M and Klemm, P (2010). Probiotic Escherichia coli strain Nissle 1917 out-competes intestinal pathogens during biofilm formation. Journal of Medical Microbiology 59: 392399.CrossRefGoogle Scholar
Hanning, I, Donoghue, DJ, Jarquin, R, Kumar, GS, Aguiar, VF, Metcalf, JH, Reyes-Herrera, I and Slavik, M (2009). Campylobacter biofilm phenotype exhibits reduced colonization in young chickens and altered in vitro virulence. Poultry Science 88: 11021107.CrossRefGoogle ScholarPubMed
Hanning, I, Jarquin, R and Slavik, M (2008). Campylobacter jejuni as a secondary colonizer of poultry biofilms. Journal of Applied Microbiology 105: 11991208.CrossRefGoogle ScholarPubMed
Harmsen, M, Lappann, M, Knochel, S and Molin, S (2010a). Role of extracellular DNA during biofilm formation by Listeria monocytogenes. Applied and Environmental Microbiology 76: 22712279.CrossRefGoogle ScholarPubMed
Harmsen, M, Yang, L, Pamp, SJ and Tolker-Nielsen, T (2010b). An update on Pseudomonas aeruginosa biofilm formation, tolerance and dispersal. FEMS Immunology and Medical Microbiology 59: 253268.CrossRefGoogle ScholarPubMed
Haussler, S and Parsek, MR (2010). Biofilms 2009: new perspectives at the heart of surface-associated microbial communities. Journal of Bacteriology 192: 29412949.CrossRefGoogle ScholarPubMed
Hill, KE, Malic, S, McKee, R, Rennison, T, Harding, KG, Williams, DW and Thomas, DW (2010). An in vitro model of chronic wound biofilms to test wound dressings and assess antimicrobial susceptibilities. Journal of Antimicrobial Chemotherapy 65: 11951206.CrossRefGoogle Scholar
Hinnebusch, BJ and Erickson, DL (2008). Yersinia pestis biofilm in the flea vector and its role in the transmission of plague. Current Topics in Microbiology and Immunology 322: 229248.Google ScholarPubMed
Houry, A, Briandet, R, Aymerich, S and Gohar, M (2010). Involvement of motility and flagella in Bacillus cereus biofilm formation. Microbiology 156: 10091018.CrossRefGoogle ScholarPubMed
Hu, Q, Han, X, Zhou, X, Ding, S, Ding, C and Yu, S (2010). Characterization of biofilm formation by Riemerella anatipestifer. Veterinary Microbiology 144: 429436.CrossRefGoogle ScholarPubMed
Huigens, RW III, Ma, L, Gambino, C, Moeller, PDR, Basso, A, Cavanagh, J, Wozniak, DJ and Melander, C (2008). Control of bacterial biofilms with marine alkaloid derivatives. Molecular BioSystems 4: 614621.CrossRefGoogle ScholarPubMed
Irie, Y, Mattoo, S and Yuk, MH (2004). The Bvg virulence control system regulates biofilm formation in Bordetella bronchiseptica. Journal of Bacteriology 186: 56925698.CrossRefGoogle ScholarPubMed
Irie, Y, O'Toole, GA and Yuk, MH (2005). Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms. FEMS Microbiology Letters 250: 237243.CrossRefGoogle ScholarPubMed
Irie, Y, Preston, A and Yuk, MH (2006). Expression of the primary carbohydrate component of the Bordetella bronchiseptica biofilm matrix is dependent on growth phase but independent of Bvg regulation. Journal of Bacteriology 188: 66806687.CrossRefGoogle ScholarPubMed
Izano, EA, Sadovskaya, I, Vinogradov, E, Mulks, MH, Velliyagounder, K, Ragunath, C, Kher, WB, Ramasubbu, N, Jabbouri, S, Perry, MB and Kaplan, JB (2007). Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae. Microbial Pathogenesis 43: 19.CrossRefGoogle ScholarPubMed
Jain, S and Chen, J (2007). Attachment and biofilm formation by various serotypes of Salmonella as influenced by cellulose production and thin aggregative fimbriae biosynthesis. Journal of Food Protection 70: 24732479.CrossRefGoogle ScholarPubMed
James, GA, Swogger, E, Wolcott, R, deLancey Pulcini, E, Secor, P, Sestrich, J, Costerton, JW and Stewart, PS (2008). Biofilms in chronic wounds. Wound Repair and Regeneration 16: 3744.CrossRefGoogle ScholarPubMed
Jin, H, Zhou, R, Kang, M, Luo, R, Cai, X and Chen, H (2006). Biofilm formation by field isolates and reference strains of Haemophilus parasuis. Veterinary Microbiology 118: 117123.CrossRefGoogle ScholarPubMed
Jin, H, Wan, Y, Zhou, R, Li, L, Luo, R, Zhang, S, Hu, J, Langford, PR and Chen, H (2008). Identification of genes transcribed by Haemophilus parasuis in necrotic porcine lung through the selective capture of transcribed sequences (SCOTS). Environmental Microbiology 10: 33263336.CrossRefGoogle ScholarPubMed
Johansen, TB, Agdestein, A, Olsen, I, Nilsen, SF, Holstad, G and Djonne, B (2009). Biofilm formation by Mycobacterium avium isolates originating from humans, swine and birds. BMC Microbiology 9: 159.CrossRefGoogle ScholarPubMed
Jost, BH and Billington, SJ (2005). Arcanobacterium pyogenes: molecular pathogenesis of an animal opportunist. Antonie Van Leeuwenhoek 88: 87102.CrossRefGoogle ScholarPubMed
Justice-Allen, A, Trujillo, J, Corbett, R, Harding, R, Goodell, G and Wilson, D (2010). Survival and replication of Mycoplasma species in recycled bedding sand and association with mastitis on dairy farms in Utah. Journal of Dairy Science 93: 192202.CrossRefGoogle Scholar
Kaplan, JB (2010). Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. Journal of Dental Research 89: 205218.CrossRefGoogle ScholarPubMed
Kaplan, JB and Mulks, MH (2005). Biofilm formation is prevalent among field isolates of Actinobacillus pleuropneumoniae. Veterinary Microbiology 108: 8994.CrossRefGoogle ScholarPubMed
Kaplan, JB, Velliyagounder, K, Ragunath, C, Rohde, H, Mack, D, Knobloch, JK and Ramasubbu, N (2004). Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. Journal of Bacteriology 186: 82138220.CrossRefGoogle ScholarPubMed
Karatan, E and Watnick, P (2009). Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiology and Molecular Biology Reviews 73: 310347.CrossRefGoogle ScholarPubMed
Kerrigan, JE, Ragunath, C, Kandra, L, Gyémant, G, Liptak, A, Janossy, L, Kaplan, JB and Ramasubbu, N (2008). Modeling and biochemical analysis of the activity of antibiofilm agent Dispersin B. Acta Biologica Hungarica 59: 439451.CrossRefGoogle ScholarPubMed
Kim, SH and Wei, CI (2009). Molecular characterization of biofilm formation and attachment of Salmonella enterica serovar Typhimurium DT104 on food contact surfaces. Journal of Food Protection 72: 18411847.CrossRefGoogle ScholarPubMed
Kim, TJ, Young, BM and Young, GM (2008). Effect of flagellar mutations on Yersinia enterocolitica biofilm formation. Applied and Environmental Microbiology 74: 54665474.CrossRefGoogle ScholarPubMed
Knapp, CW, Zhang, W, Sturm, BS and Graham, DW (2010). Differential fate of erythromycin and beta-lactam resistance genes from swine lagoons waste under different aquatic conditions. Environmental Pollution 158: 15061512.CrossRefGoogle ScholarPubMed
Kolodkin-Gal, I, Romero, D, Cao, S, Clardy, J, Kolter, R and Losick, R (2010). D-amino acids trigger biofilm disassembly. Science 328: 627629.CrossRefGoogle ScholarPubMed
Konto-Ghiorghi, Y, Mairey, E, Mallet, A, Duménil, G, Caliot, E, Trieu-Cuot, P and Dramsi, S (2009). Dual role for pilus in adherence to epithelial cells and biofilm formation in Streptococcus agalactiae. PLoS Pathogens 5: e1000422.CrossRefGoogle ScholarPubMed
Korbsrisate, S, Vanaporn, M, Kerdsuk, P, Kespichayawattana, W, Vattanaviboon, P, Kiatpapan, P and Lertmemongkolchai, G (2005). The Burkholderia pseudomallei RpoE (AlgU) operon is involved in environmental stress tolerance and biofilm formation. FEMS Microbiology Letters 252: 243249.CrossRefGoogle ScholarPubMed
Kozlova, EV, Popov, VL, Sha, J, Foltz, SM, Erova, TE, Agar, SL, Horneman, AJ and Chopra, AK (2008). Mutation in the S-ribosylhomocysteinase (luxS) gene involved in quorum sensing affects boil formation and virulence in a clinical isolate of Aeromonas hydrophila. Microbial Pathogenesis 45: 343354.CrossRefGoogle Scholar
Kyme, P, Dillon, B and Iredell, J (2003). Phase variation in Bartonella henselae. Microbiology 149: 621629.CrossRefGoogle ScholarPubMed
Labrie, J, Pelletier-Jacques, G, Deslandes, V, Ramjeet, M, Auger, E, Nash, JH and Jacques, M (2010). Effects of growth conditions on biofilm formation by Actinobacillus pleuropneumoniae. Veterinary Research 41: 03.CrossRefGoogle ScholarPubMed
Landini, P, Antoniani, D, Burgess, JG and Nijland, R (2010). Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Applied Microbiology and Biotechnology 86: 813823.CrossRefGoogle ScholarPubMed
Latorre, AA, Van Kessel, JS, Karns, JS, Zurakowski, MJ, Pradhan, AK, Boor, KJ, Jayarao, BM, Houser, BA, Daugherty, CS and Schukken, YH (2010). Biofilm in milking equipment on a dairy farm as a potential source of bulk tank milk contamination with Listeria monocytogenes. Journal of Dairy Science 93: 27922802.CrossRefGoogle ScholarPubMed
Lee, K, Costerton, JW, Ravel, J, Auerbach, RK, Wagner, DM, Keim, P and Leid, JG (2007). Phenotypic and functional characterization of Bacillus anthracis biofilms. Microbiology 153: 16931701.CrossRefGoogle ScholarPubMed
Lee, HS, Gu, F, Ching, SM, Lam, Y and Chua, KL (2010). CdpA, a Burkholderia pseudomallei cyclic-di-GMP phosphodiesterase involved in autoaggregation, flagella synthesis, motility, biofilm formation, cell invasion and cytotoxicity. Infection and Immunity 78: 18321840.CrossRefGoogle ScholarPubMed
Lemon, KP, Earl, AM, Vlamakis, HC, Aguilar, C and Kolter, R (2008). Biofilm development with an emphasis on Bacillus subtilis. Current Topics in Microbiology and Immunology 322: 116.Google ScholarPubMed
Lenz, AP, Williamson, KS, Pitts, B, Stewart, PS and Franklin, MJ (2008). Localized gene expression in Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology 74: 44634471.CrossRefGoogle ScholarPubMed
Li, L, Zhou, R, Li, T, Kang, M, Wan, Y, Xu, Z and Chen, H (2008). Enhanced biofilm formation and reduced virulence of Actinobacillus pleuropneumoniae luxS mutant. Microbial Pathogenesis 45: 192200.CrossRefGoogle ScholarPubMed
Liu, J, Tan, C, Li, J, Chen, H, Xu, P, He, Q, Bei, W and Chen, H (2008). Characterization of ISApl1, an insertion element from Actinobacillus pleuropneumoniae field isolate in China. Veterinary Microbiology 132: 348354.CrossRefGoogle ScholarPubMed
Lynch, MJ, Swift, S, Kirke, DF, Keevil, CW, Dodd, CER and Williams, P (2002). The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environmental Microbiology 4: 1828.CrossRefGoogle ScholarPubMed
Ma, L, Conover, M, Lu, H, Parsek, MR, Bayles, K and Wozniak, DJ (2009). Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathogens 5: e1000354.CrossRefGoogle ScholarPubMed
Macovei, L, Ghosh, A, Thomas, VC, Hancock, LE, Mahmood, S and Zurek, L (2009). Enterococcus faecalis with the gelatinase phenotype regulated by the fsr operon and with biofilm-forming capacity are common in the agricultural environment. Environmental Microbiology 11: 15401547.CrossRefGoogle ScholarPubMed
Margolis, JJ, El-Etr, S, Joubert, LM, Moore, E, Robison, R, Rasley, A, Spormann, AM and Monack, DM (2010). Contribution of Francisella tularensis subsp. novicida chitinases and Sec secretion system to biofilm formation on chitin. Applied and Environmental Microbiology 76: 596608.CrossRefGoogle ScholarPubMed
Marin, C, Hernandiz, A and Lainez, M (2009). Biofilm development capacity of Salmonella strains isolated in poultry risk factors and their resistance against disinfectants. Poultry Science 88: 424431.CrossRefGoogle ScholarPubMed
McAuliffe, L, Ellis, RJ, Miles, K, Ayling, RD and Nicholas, RA (2006). Biofilm formation by mycoplasma species and its role in environmental persistence and survival. Microbiology 152: 913922.CrossRefGoogle ScholarPubMed
McAuliffe, L, Ayling, RD, Ellis, RJ and Nicholas, RA (2008). Biofilm-grown Mycoplasma mycoides subsp. mycoides SC exhibit both phenotypic and genotypic variation compared with planktonic cells. Veterinary Microbiology 129: 315324.CrossRefGoogle ScholarPubMed
McLennan, MK, Ringoir, DD, Frirdich, E, Svensson, SL, Wells, DH, Jarrell, H, Szymanski, CM and Gaynor, EC (2008). Campylobacter jejuni biofilms up-regulated in the absence of the stringent response utilize a calcofluor white-reactive polysaccharide. Journal of Bacteriology 190: 10971107.CrossRefGoogle ScholarPubMed
Melchior, MB, Fink-Gremmels, J and Gaastra, W (2006a). Comparative assessment of the antimicrobial susceptibility of Staphylococcus aureus isolates from bovine mastitis in biofilm versus planktonic culture. Journal of Veterinary Medicine, Series B 53: 326332.CrossRefGoogle ScholarPubMed
Melchior, MB, Vaarkamp, H and Fink-Gremmels, J (2006b). Biofilms: a role in recurrent mastitis infections? Veterinary Journal 171: 398407.CrossRefGoogle ScholarPubMed
Melchior, MB, van Osch, MH, Graat, RM, van Duijkeren, E, Mevius, DJ, Nielen, M, Gaastra, W and Fink-Gremmels, J (2009). Biofilm formation and genotyping of Staphylococcus aureus bovine mastitis isolates: evidence for lack of penicillin-resistance in Agr-type II strains. Veterinary Microbiology 137: 8389.CrossRefGoogle ScholarPubMed
Mishra, M, Parise, G, Jackson, KD, Wozniak, DJ and Deora, R (2005). The BvgAS signal transduction system regulates biofilm development in Bordetella. Journal of Bacteriology 187: 14741484.CrossRefGoogle ScholarPubMed
Moe, KK, Mimura, J, Ohnishi, T, Wake, T, Yamazaki, W, Nakai, M and Misawa, N (2010). The mode of biofilm formation on smooth surfaces by Campylobacter jejuni. Journal of Veterinary Medical Science 72: 411416.CrossRefGoogle ScholarPubMed
Mohamed, JA and Huang, DB (2007). Biofilm formation by enterococci. Journal of Medical Microbiology 56: 15811588.CrossRefGoogle ScholarPubMed
Moscoso, M, García, E and López, R (2009). Pneumococcal biofilms. International Microbiology 12: 7785.Google ScholarPubMed
Murphy, C, Carroll, C and Jordan, KN (2006). Environmental survival mechanisms of the foodborne pathogen Campylobacter jejuni. Journal of Applied Microbiology 100: 623632.CrossRefGoogle ScholarPubMed
Murphy, TF, Bakaletz, LO and Smeesters, PR (2009). Microbial interactions in the respiratory tract. Pediatric Infectious Disease Journal 28: S121S126.CrossRefGoogle ScholarPubMed
Naito, M, Frirdich, E, Fields, JA, Pryjma, M, Li, J, Cameron, A, Gilbert, M, Thompson, SA and Gaynor, EC (2010). Effects of sequential Campylobacter jejuni 81–176 lipooligosaccharide core truncations on biofilm formation, stress, survival, and pathogenesis. Journal of Bacteriology 192: 21822192.CrossRefGoogle ScholarPubMed
Nemati, M, Hermans, K, Devriese, LA, Maes, D and Haesebrouck, F (2009). Screening of genes encoding adhesion factors and biofilm formation in Staphylococcus aureus isolates from poultry. Avian Pathology 38: 513517.CrossRefGoogle ScholarPubMed
Ojha, AK, Baughn, AD, Sambandan, D, Hsu, T, Trivelli, X, Guerardel, Y, Alahari, A, Kremer, L, Jacobs, WE Jr. and Hatfull, GF (2008). Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Molecular Microbiology 69: 164174.CrossRefGoogle ScholarPubMed
Oliveira, M, Bexiga, R, Nunes, SF, Carneiro, C, Cavaco, LM, Bernardo, F and Vilela, CL (2006). Biofilm-forming ability profiling of Staphylococcus aureus and Staphylococcus epidermidis mastitis isolates. Veterinary Microbiology 118: 133140.CrossRefGoogle ScholarPubMed
Oliveira, M, Nunes, SF, Carneiro, C, Bexiga, R, Bernardo, F and Vilela, CL (2007). Time course of biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis mastitis isolates. Veterinary Microbiology 124: 187191.CrossRefGoogle ScholarPubMed
Oliveira, M, Santos, V, Fernandes, A, Bernardo, F and Vilela, CL (2010). Antimicrobial resistance and in vitro biofilm-forming ability of enterococci from intensive and extensive farming broilers. Poultry Science 89: 10651069.CrossRefGoogle ScholarPubMed
Oliver, SP, Jayarao, BM and Almeida, RA (2005). Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathogens and Disease 2: 115129.CrossRefGoogle ScholarPubMed
Olson, ME, Ceri, H, Morck, DW, Buret, AG and Read, RR (2002). Biofilm bacteria: formation and comparative susceptibility to antibiotics. Canadian Journal of Veterinary Research 66: 8692.Google ScholarPubMed
Parise, G, Mishra, M, Itoh, Y, Romeo, T and Deora, R (2007). Role of a putative polysaccharide locus in Bordetella biofilm development. Journal of Bacteriology 189: 750760.CrossRefGoogle ScholarPubMed
Pérez, MM, Prenafeta, A, Valle, J, Penadés, J, Rota, C, Solano, C, Marco, J, Grilló, MJ, Lasa, I, Irache, JM, Maira-Litrán, T, Jiménez-Barbero, J, Costa, L, Pier, GB, de Andrés, D and Amorena, B (2009). Protection from Staphylococcus aureus mastitis associated with poly-N-acetyl β-1,6 glucosamine specific antibody production using biofilm-embedded bacteria. Vaccine 27: 23792386.CrossRefGoogle ScholarPubMed
Pérez-Osorio, AC, Williamson, KS and Franklin, MJ (2010). Heterogeneous rpoS and rhlR mRNA levels and 16S rRNA/rDNA ratios within Pseudomonas aeruginosa biofilms, sampled by laser capture microdissection. Journal of Bacteriology 192: 29913000.CrossRefGoogle ScholarPubMed
Peyrat, MB, Soumet, C, Maris, P and Sanders, P (2008). Recovery of Campylobacter jejuni from surfaces of poultry slaughterhouses after cleaning and disinfection procedures: analysis of a potential source of carcass contamination. International Journal of Food Microbiology 124: 188194.CrossRefGoogle ScholarPubMed
Prigent-Combaret, C, Prensier, G, Le Thi, TT, Vidal, O, Lejeune, P and Dorel, C (2000). Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colonic acid. Environmental Microbiology 2: 450464.CrossRefGoogle Scholar
Puttamreddy, S, Cornick, NA and Minion, FC (2010). Genome-wide transposon mutagenesis reveals a role for pO157 genes in biofilm development in Escherichia coli O157:H7 EDL933. Infection and Immunity 78: 23772384.CrossRefGoogle ScholarPubMed
Reeser, RJ, Medler, RT, Billington, SJ, Jost, BH and Joens, LA (2007). Characterization of Campylobacter jejuni biofilms under defined growth conditions. Applied and Environmental Microbiology 73: 19081913.CrossRefGoogle ScholarPubMed
Reuter, M, Mallett, A, Pearson, BM and van Vliet, AH (2010). Biofilm formation in Campylobacter jejuni is increased under aerobic conditions. Applied and Environmental Microbiology 76: 21222128.CrossRefGoogle ScholarPubMed
Richards, JJ and Melander, C (2009). Controlling bacterial biofilms. ChemBioChem 10: 22872294.CrossRefGoogle ScholarPubMed
Riedel, CU, Monk, IR, Casey, PG, Waidmann, MS, Gahan, CG and Hill, C (2009). AgrD-dependent quorum-sensing affects biofilm formation, invasion, virulence and global gene expression profiles in Listeria monocytogenes. Molecular Microbiology 71: 11771189.CrossRefGoogle ScholarPubMed
Rinaudo, CD, Rosini, R, Galeotti, CL, Berti, F, Necchi, F, Reguzzi, V, Ghezzo, C, Telford, JL, Grandi, G and Maione, D (2010). Specific involvement of pilus type 2a in biofilm formation in group B Streptococcus. PLoS One 5: e9216.CrossRefGoogle ScholarPubMed
Ristow, P, Bourhy, P, Kerneis, S, Schmitt, C, Prevost, MC, Lilenbaum, W and Picardeau, M (2008). Biofilm formation by saprophytic and pathogenic leptospires. Microbiology 154: 13091317.CrossRefGoogle ScholarPubMed
Römling, U (2005). Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae. Cellular and Molecular Life Sciences 62: 12341246.CrossRefGoogle ScholarPubMed
Ross, RF (2007). Pasteurella multocida and its role in porcine pneumonia. Animal Health Research Reviews 7: 1329.CrossRefGoogle Scholar
Russell, AD (2002). Antibiotic and biocide resistance in bacteria: introduction. Journal of Applied Microbiology 92: 1S3S.CrossRefGoogle ScholarPubMed
Ryder, C, Byrd, M and Wozniak, DJ (2007). Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Current Opinion in Microbiology 10: 644648.CrossRefGoogle ScholarPubMed
Sandal, I, Hong, W, Swords, WE and Inzana, TJ (2007). Characterization and comparison of biofilm development by pathogenic and commensal isolates of Histophilus somni. Journal of Bacteriology 189: 81798185.CrossRefGoogle ScholarPubMed
Sandal, I, Shao, JQ, Annadata, S, Apicella, MA, Boye, M, Jensen, TK, Saunders, GK and Inzana, TJ (2009). Histophilus somni biofilm formation in cardiopulmonary tissue of the bovine host following respiratory challenge. Microbes and Infection 11: 254263.CrossRefGoogle ScholarPubMed
Sawasdidoln, C, Taweechaisupapong, S, Sermswan, RW, Tattawasart, U, Tungpradabkul, S and Wongratanacheewin, S (2010). Growing Burkholderia pseudomallei in biofilm stimulating conditions significantly induces antimicrobial resistance. PLoS One 5: e9196.CrossRefGoogle ScholarPubMed
Schuch, R and Fischetti, VA (2009). The secret life of the anthrax agent Bacillus anthracis: bacteriophage-mediated ecological adaptations. PLoS One 4: e6532.CrossRefGoogle ScholarPubMed
Shaheen, R, Svensson, B, Andersson, MA, Christiansson, A and Salkinoja-Salonen, M (2010). Persistence strategies of Bacillus cereus spores isolated from dairy silo tanks. Food Microbiology 27: 347355.CrossRefGoogle ScholarPubMed
Shi, X, Rao, NN and Kornberg, A (2004). Inorganic polyphosphate in Bacillus cereus: motility, biofilm formation, and sporulation. Proceedings of the National Academy of Sciences, USA 101: 1706117065.CrossRefGoogle ScholarPubMed
Shimoji, Y, Ogawa, Y, Osaki, M, Kabeya, H, Maruyama, S, Mikami, T and Sekizaki, T (2003). Adhesinve surface proteins of Erysipelothrix rhusiopathiae bind to polystyrene, fibronectin, and type I and IV collagens. Journal of Bacteriology 185: 27392748.CrossRefGoogle ScholarPubMed
Simmons, WL and Dybvig, K (2007). Biofilms protect Mycoplasma pulmonis cells from lytic effects of complement and gramicidin. Infection and Immunity 75: 36963699.CrossRefGoogle ScholarPubMed
Simmons, WL and Dybvig, K (2009). Mycoplasma biofilms ex vivo and in vivo. FEMS Microbiology Letters 295: 7781.CrossRefGoogle ScholarPubMed
Sloan, GP, Love, CF, Sukumar, N, Mishra, M and Deora, R (2007). The Bordetella Bps polysaccharide is critical for biofilm development in the mouse respiratory tract. Journal of Bacteriology 189: 82708276.CrossRefGoogle ScholarPubMed
Stewart, PS (2003). New ways to stop biofilm infections. The Lancet 361: 97.CrossRefGoogle ScholarPubMed
Sulaeman, S, Le Bihan, G, Rossero, A, Federighi, M, , E and Tresse, O (2010). Comparison between the biofilm initiation of Campylobacter jejuni and Campylobacter coli strains to an inert surface using BioFilm Ring Test. Journal of Applied Microbiology 108: 13031312.CrossRefGoogle Scholar
Sun, YC, Koumoutsi, A and Darby, C (2009). The response regulator PhoP negatively regulates Yersinia pseudotuberculosis and Yersinia pestis biofilms. FEMS Microbiology Letters 290: 8590.CrossRefGoogle ScholarPubMed
Svensson, SL, Davis, LM, MacKichan, JK, Allan, BJ, Pajaniappan, M, Thompson, SA and Gaynor, EC (2009). The CprS sensor kinase of the zoonotic pathogen Campylobacter jejuni influences biofilm formation and is required for optimal chick colonization. Molecular Microbiology 71: 253272.CrossRefGoogle ScholarPubMed
Takahashi, H, Suda, T, Tanaka, Y and Kimura, B (2010). Cellular hydrophobicity of Listeria monocytogenes involves initial attachment and biofilm formation on the surface of polyvinyl chloride. Letters in Applied Microbiology 50: 618625.CrossRefGoogle ScholarPubMed
Tanabe, S-I, Bonifait, L, Fittipaldi, N, Grignon, L, Gottschalk, M and Grenier, D (2010). Pleiotropic effects of polysaccharide capsule loss on selected biological properties of Streptococcus suis. Canadian Journal of Veterinary Research 74: 6570.Google ScholarPubMed
Taweechaisupapong, S, Kaewpa, C, Arunyanart, C, Kanla, P, Homchampa, P, Sirisinha, S, Proungvitaya, T and Wongratanacheewin, S (2005). Virulence of Burkholderia pseudomallei does not correlate with biofilm formation. Microbial Pathogenesis 39: 7785.CrossRefGoogle Scholar
Tegetmeyer, HE, Fricke, K and Baltes, N (2009). An isogenic Actinobacillus pleuropneumoniae AasP mutant exhibits altered biofilm formation but retains virulence. Veterinary Microbiology 137: 392396.CrossRefGoogle ScholarPubMed
Teng, F, Singh, KV, Bourgogne, A, Zeng, J and Murray, BE (2009). Further characterization of the epa gene cluster of Epa polysaccharides of Enterococcus faecalis. Infection and Immunity 77: 37593767.CrossRefGoogle ScholarPubMed
Todhanakasem, T and Young, GM (2008). Loss of flagellum-based motility by Listeria monocytogenes results in formation of hyperbiofilms. Journal of Bacteriology 190: 60306034.CrossRefGoogle ScholarPubMed
Tormo, MA, Knecht, E, Götz, F, Lasa, I and Penadés, JR (2005). Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology 151: 24652475.CrossRefGoogle ScholarPubMed
Toté, K, Horemans, T, Vanden Berghe, D, Maes, L and Cos, P (2010). Inhibitory effect of biocides on viable mass and matrix of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology 76: 31353142.CrossRefGoogle ScholarPubMed
Trachoo, N and Frank, JF (2002). Effectiveness of chemical sanitizers against Campylobacter jejuni-containing biofilms. Journal of Food Protection 65: 11171121.CrossRefGoogle ScholarPubMed
Trachoo, N, Frank, JF and Stern, NJ (2002). Survival of Campylobacter jejuni in biofilms isolated from chicken houses. Journal of Food Protection 65: 11101116.CrossRefGoogle ScholarPubMed
Truchado, P, Gil-Izquierdo, A, Tomás-Barberán, F and Allende, A (2009). Inhibition by chestnut honey of N-acyl-L-homoserine lactones and biofilm formation in Erwinia carotovora, Yersinia enterocolitica, and Aeromonas hydrophila. Journal of Agricultural and Food Chemistry 57: 1118611193.CrossRefGoogle ScholarPubMed
Tunpiboonsak, S, Mongkolrob, R, Kitudomsub, K, Thanwatanaying, P, Kiettipirodom, W, Tungboontina, Y and Tungpradabkul, S (2010). Role of Burkholderia pseudomallei polyphosphate kinase in an oxidative stress response, motilities, and biofilm formation. Journal of Microbiology 48: 6370.CrossRefGoogle Scholar
Uhlich, GA, Rogers, DP and Mosier, DA (2010). Escherichia coli serotype O157:H7 retention on solid surfaces and peroxide resistance is enhanced by dual-strain biofilm formation. Foodborne Pathogens and Disease 7: 935943.CrossRefGoogle ScholarPubMed
Uzureau, S, Godefroid, M, Deschamps, C, Lemaire, J, De Bolle, X and Letesson, JJ (2007). Mutations of the quorum sensing-dependent regulator VjbR lead to drastic surface modifications in Brucella melitensis. Journal of Bacteriology 189: 60356047.CrossRefGoogle ScholarPubMed
Vancraeynest, D, Hermans, K and Haesebrouck, F (2004). Genotypic and phenotypic screening of high and low virulence Staphylococcus aureus isolates from rabbits for biofilm formation and MSCRAMMs. Veterinary Microbiology 103: 241247.CrossRefGoogle ScholarPubMed
Van Houdt, R and Michiels, CW (2010). Biofilm formation and the food industry, a focus on the bacterial outer surface. Journal of Applied Microbiology 109: 11171131.CrossRefGoogle ScholarPubMed
Van Parys, A, Boyen, F, Verbrugghe, E, Leyman, B, Rychlik, I, Haesebrouck, F and Pasmans, F (2010). Salmonella Typhimurium resides largely as an extracellular pathogen in porcine tonsils, independently of biofilm-associated genes csgA, csgD and adrA. Veterinary Microbiology 144: 9399.CrossRefGoogle ScholarPubMed
Varga, JJ, Therit, B and Melville, SB (2008). Type IV pili and the CcpA protein are needed for maximal biofilm formation by the gram-positive anaerobic pathogen Clostridium perfringens. Infection and Immunity 76: 49444951.CrossRefGoogle ScholarPubMed
Wei, Z, Li, R, Zhang, A, He, H, Hua, Y, Xia, J, Cai, X, Chen, H and Jin, M (2009). Characterization of Streptococcus suis isolates from the diseased pigs in China between 2003 and 2007. Veterinary Microbiology 137: 196201.CrossRefGoogle Scholar
Wijman, JG, de Leeuw, PP, Moezelaar, R, Zwietering, MH and Abee, T (2007). Air-liquid interface biofilms of Bacillus cereus: formation, sporulation, and dispersion. Applied and Environmental Microbiology 73: 14811488.CrossRefGoogle ScholarPubMed
Wong, AC (1998). Biofilms in food processing environments. Journal of Dairy Science 81: 27652770.CrossRefGoogle ScholarPubMed
Wong, HS, Townsend, KM, Fenwick, SG, Trengove, RD and O'Handley, RM (2010). Comparative susceptibility of planktonic and 3-day-old Salmonella Typhimurium biofilms to disinfectants. Journal of Applied Microbiology 108: 22222228.Google ScholarPubMed
Wood, TK (2009). Insights on Escherichia coli biofilm formation and inhibition from whole-transcriptome profiling. Environmental Microbiology 11: 115.CrossRefGoogle ScholarPubMed
Wortham, BW, Oliveira, MA, Fetherston, JD and Perry, RD (2010). Polyamines are required for the expression of key Hms proteins important for Yersinia pestis biofilm formation. Environmental Microbiology 12: 20342047.CrossRefGoogle ScholarPubMed
Wu, CW, Schmoller, SK, Bannantine, JP, Eckstein, TM, Inamine, JM, Livesey, M, Albrecht, R and Talaat, AM (2009). A novel cell wall lipopeptide is important for biofilm formation and pathogenicity of Mycobacterium avium subspecies paratuberculosis. Microbial Pathogenesis 46: 222230.CrossRefGoogle ScholarPubMed
Yamazaki, Y, Danelishvili, L, Wu, M, Hidaka, E, Katsuyama, T, Stang, B, Petrofsky, M, Bildfell, R and Bermudez, LE (2006a). The ability to form biofilm influences Mycobacterium avium invasion and translocation of bronchial epithelial cells. Cellular Microbiology 8: 806814.CrossRefGoogle ScholarPubMed
Yamazaki, Y, Danelishvili, L, Wu, M, MacNab, M and Bermudez, LE (2006b). Mycobacterium avium genes associated with the ability to form a biofilm. Applied and Environmental Microbiology 72: 819825.CrossRefGoogle Scholar
Yang, X, Ma, O and Wood, TK (2008). The R1 conjugative plasmid increases Escherichia coli biofilm formation through an envelope stress response. Applied and Environmental Microbiology 74: 26902699.CrossRefGoogle ScholarPubMed
Zhang, W, Sturm, BS, Knapp, CW and Graham, DW (2009). Accumulation of tetracycline resistance genes in aquatic biofilms due to periodic waste loadings from swine lagoons. Environmental Science and Technology 43: 76437650.CrossRefGoogle ScholarPubMed
Zogaj, X, Nimtz, M, Rhode, M, Bokranz, W and Römling, U (2001). The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Molecular Microbiology 39: 14521463.CrossRefGoogle ScholarPubMed