Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T09:07:09.187Z Has data issue: false hasContentIssue false

Mannheimia haemolytica and bovine respiratory disease

Published online by Cambridge University Press:  24 January 2008

J. A. Rice
Affiliation:
Dow AgroSciences, Indianapolis, IN, USA
L. Carrasco-Medina
Affiliation:
Department of Pathobiology, University of Guelph, Guelph, ON, Canada
D. C. Hodgins
Affiliation:
Department of Pathobiology, University of Guelph, Guelph, ON, Canada
P. E. Shewen*
Affiliation:
Department of Pathobiology, University of Guelph, Guelph, ON, Canada
*
*Corresponding author. E-mail: [email protected]

Abstract

Mannheimia haemolytica is the principal bacterium isolated from respiratory disease in feedlot cattle and is a significant component of enzootic pneumonia in all neonatal calves. A commensal of the nasopharynx, M. haemolytica is an opportunist, gaining access to the lungs when host defenses are compromised by stress or infection with respiratory viruses or mycoplasma. Although several serotypes act as commensals, A1 and A6 are the most frequent isolates from pneumonic lungs. Potential virulence factors include adhesin, capsular polysaccharide, fimbriae, iron-regulated outer membrane proteins, leukotoxin (Lkt), lipopolysaccharide (LPS), lipoproteins, neuraminidase, sialoglycoprotease and transferrin-binding proteins. Of these, Lkt is pivotal in induction of pneumonia. Lkt-mediated infiltration and destruction of neutrophils and other leukocytes impairs bacterial clearance and contributes to development of fibrinous pneumonia. LPS may act synergistically with Lkt, enhancing its effects and contributing endotoxic activity. Antibiotics are employed extensively in the feedlot industry, both prophylactically and therapeutically, but their efficacy varies because of inconsistencies in diagnosis and treatment regimes and development of antibiotic resistance. Vaccines have been used for many decades, even though traditional bacterins failed to demonstrate protection and their use often enhanced disease in vaccinated animals. Modern vaccines use culture supernatants containing Lkt and other soluble antigens, or bacterial extracts, alone or combined with bacterins. These vaccines have 50–70% efficacy in prevention of M. haemolytica pneumonia. Effective control of M. haemolytica pneumonia is likely to require a combination of more definitive diagnosis, efficacious vaccines, therapeutic intervention and improved management practices.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdullah, KM, Udoh, EA, Shewen, PE and Mellors, A (1992). A neutral glycoprotease of Pasteurella haemolytica A1 specifically cleaves O-sialoglycoproteins. Infection and Immunity 60: 5662.CrossRefGoogle ScholarPubMed
Al-Ghamdi, GM, Ames, TR, Baker, JC, Walker, R, Chase, CC, Frank, GH and Maheswaran, SK (2000). Serotyping of Mannheimia haemolytica isolates from the upper Midwest United States. Journal of Veterinary Diagnostic Investigation 12: 576578.CrossRefGoogle ScholarPubMed
Allan, EM, Wiseman, A, Gibbs, HA and Selman, IE (1985). Pasteurella species isolated from bovine respiratory tract and their antimicrobial sensitivity patterns. Veterinary Record 117: 629631.CrossRefGoogle ScholarPubMed
Allen, JW, Viel, L, Bateman, KG, Rosendal, S, Shewen, PE and Physick-Sheard, P (1991). The microbial flora of the respiratory tract in feedlot calves: associations between nasopharyngeal and bronchoalveolar lavage cultures. Canadian Journal of Veterinary Research 55: 341346.Google ScholarPubMed
Ambagala, TC, Ambagala, AP and Srikumaran, S (1999). The leukotoxin of Pasteurella haemolytica binds to beta(2) integrins on bovine leukocytes. FEMS Microbiology Letters 179: 1667.Google ScholarPubMed
Ames, TR (1997). Dairy calf pneumonia: the disease and its impact. Veterinary Clinics of North America: Food Animal Practice 13: 379391.Google ScholarPubMed
Angen, O, Mutters, R, Caugant, DA, Olsen, JE and Bisgaard, M (1999a). Taxonomic relationships of the [Pasteurella] haemolytica complex as evaluated by DNA–DNA hybridizations and 16S rRNA sequencing with proposal of Mannheimia haemolytica gen. nov., comb. nov., Mannheimia granulomatis comb. nov., Mannheimia glucosida sp. nov., Mannheimia ruminalis sp. nov. and Mannheimia varigena sp. nov. International Journal of Systematic Bacteriology 49: 6786.Google ScholarPubMed
Angen, O, Quirie, M, Donachie, W and Bisgaard, M (1999b). Investigations on the species specificity of Mannheimia (Pasteurella) haemolytica serotyping. Veterinary Microbiology 65: 283290.CrossRefGoogle ScholarPubMed
Apley, M (1997). Antimicrobial therapy of bovine respiratory disease. Veterinary Clinics of North America: Food Animal Practice 13: 549574.Google ScholarPubMed
Apley, M (1999). Respiratory disease therapeutics. In: Howard, LJ and Smith, RA (eds) Current Veterinary Therapy – Food Animal Practice. 4th edn.Philadelphia, PA: W.B. Saunders.Google Scholar
Ayalew, S, Confer, AW and Blackwood, ER (2004). Characterization of immunodominant and potentially protective epitopes of Mannheimia haemolytica serotype 1 outer membrane lipoprotein PlpE. Infection and Immunity 72: 72657274.CrossRefGoogle ScholarPubMed
Babiuk, LA and Acres, SD (1984). Models for bovine respiratory disease. In: Loan, RW (ed.) Bovine Respiratory Disease, Proceedings of the North American Symposium on Bovine Respiratory Disease. College Station, TX: Texas A&M University Press.Google Scholar
Babiuk, LA and Campos, M (1993). Respiratory vaccines for farm animals. In: Peters, AR (ed.) Vaccines for Veterinary Applications. Oxford, UK: Butterworth-Heinemann, pp. 83115.Google Scholar
Bailly, P, Tontti, E, Hermand, P, Cartron, JP and Gahmberg, CG (1995). The red cell LW blood group protein is an intercellular adhesion molecule, which binds to CD11/CD18 leukocyte integrins. European Journal of Immunology 25: 33163320.CrossRefGoogle ScholarPubMed
Baluyut, CS, Simonson, RR, Bemrick, WJ and Maheswaran, SK (1981). Interaction of Pasteurella haemolytica with bovine neutrophils: identification and partial characterization of a cytotoxin. American Journal of Veterinary Research 42: 19201926.Google ScholarPubMed
Bateman, KG (1988). Efficacy of a Pasteurella haemolytica vaccine/bacterial extract in the prevention of bovine respiratory disease in recently shipped feedlot calves. Canadian Veterinary Journal 29: 838839.Google ScholarPubMed
Bateman, KG (1993). Antimicrobial drug use in cattle. In: Prescott, JF and Baggot, JD (eds) Antimicrobial Therapy in Veterinary Medicine, 2nd edn. Ames, IA: Iowa State University Press, pp. 456468.Google Scholar
Bateman, KG, Martin, SW, Shewen, PE and Menzies, PI (1990). An evaluation of antimicrobial therapy for undifferentiated bovine respiratory disease. Canadian Veterinary Journal 31: 689697.Google ScholarPubMed
Bentley, OE and Cummins, JM (1987). Efficacy of sulbactam, a betalactamase inhibitor, combined with ampicillin, in the therapy of ampicillin-resistant pneumonic pasteurellosis in feedlot calves. Canadian Veterinary Journal 28: 591594.Google Scholar
Berggren, KA, Baluyut, CS, Simonson, RR, Bemrick, WJ and Maheswaran, SK (1981). Cytotoxic effects of Pasteurella haemolytica on bovine neutrophils. American Journal of Veterinary Research 42: 13831388.Google ScholarPubMed
Berman, AE, Kozlova, NI and Morozevich, GE (2003). Integrins: structure and signaling. Biochemistry (Moscow) 68: 12841299.CrossRefGoogle ScholarPubMed
Biberstein, EL (1978). Biotyping and serotyping Pasteurella haemolytica. In: Bergan, T and Norris, JR (eds) Methods in Microbiology. London: Academic Press, pp. 253269.Google Scholar
Bingham, DP, Moore, R and Richards, AB (1990). Comparison of DNA:DNA homology and enzymatic activity between Pasteurella haemolytica and related species. American Journal of Veterinary Research 51: 11611166.CrossRefGoogle ScholarPubMed
Blackall, PJ, Bojesen, AM, Christensen, H and Bisgaard, M (2007). Reclassification of [Pasteurella] trehalosi as Bibersteinia trehalosi gen. nov., comb. nov. International Journal of Systematic and Evolutionary Microbiology 5: 666674.CrossRefGoogle Scholar
Blood, DC, Radostits, OM and Henderson, JA (1983). Veterinary Medicine, 6th edn.London: Bailliere-Tindall.Google Scholar
Booker, CW, Abutarbush, SM, Schunicht, OC, Jim, GK, Perrett, T, Wildman, BK, Guichon, PT, Pittman, TJ, Jones, C and Pollock, CM (2007) Evaluation of the efficacy of tulathromycin as a metaphylactic antimicrobial in feedlot calves. Veterinary Therapeutics 8: 183200.Google ScholarPubMed
Bowersock, TL, Hogenesch, H, Suckow, M, Guimond, P, Martin, S, Borie, D, Torregrosa, S, Park, H and Park, K (1999). Oral vaccination of animals with antigens encapsulated in alginate microspheres. Vaccine 17: 18041811.CrossRefGoogle ScholarPubMed
Bowland, SL and Shewen, PE (2000). Bovine respiratory disease: commercial vaccines currently available in Canada. Canadian Veterinary Journal 41: 3348.Google ScholarPubMed
Breider, MA, Walker, RD, Hopkins, FM, Schultz, TW and Bowersock, TL (1988). Pulmonary lesions induced by Pasteurella haemolytica in neutrophil sufficient and neutrophil deficient calves. Canadian Journal of Veterinary Research 52: 205209.Google ScholarPubMed
Briggs, RE and Tatum, FM (1999). New mucosal vaccine in beef cattle imparts rapid resistance to pneumonic pasteurellosis after mass-medicating on feed. Presented at the Annual Meeting of United States Animal Health Association, San Diego, CA. www.usaha.orgGoogle Scholar
Brogden, KA, Debey, B, Audibert, F, Lehmkuhl, H and Chedid, L (1995). Protection of ruminants by Pasteurella haemolytica A1 capsular polysaccharide vaccines containing muramyl dipeptide analogs. Vaccine 13: 16771684.CrossRefGoogle ScholarPubMed
Brogden, KA, Lehmkuhl, HD and Cutlip, RC (1998). Pasteurella haemolytica complicated respiratory infections in sheep and goats. Veterinary Research 29: 233254.Google ScholarPubMed
Brown, GB, Bolin, SR, Frank, DE and Roth, JA (1991). Defective function of leukocytes from cattle persistently infected with bovine viral diarrhea virus, and the influence of recombinant cytokines. American Journal of Veterinary Research 52: 381387.CrossRefGoogle ScholarPubMed
JrBrown, TT and Ananaba, G (1988). Effect of respiratory infections caused by bovine herpesvirus-1 or parainfluenza-3 virus on bovine alveolar macrophage functions. American Journal of Veterinary Research 49: 14471451.Google ScholarPubMed
Carter, GR, Chengappa, MM and Roberts, AW (1995). Essentials of Veterinary Microbiology. Baltimore, MD: Williams & Wilkins, pp. 171179.Google Scholar
Chae, CH, Gentry, MJ, Confer, AW and Anderson, GA (1990). Resistance to host immune defense mechanisms afforded by capsular material of Pasteurella haemolytica, serotype 1. Veterinary Microbiology 25: 241251.CrossRefGoogle ScholarPubMed
Chang, Y, Young, R, Post, D and Struck, DK (1989). Identification and characterization of the Pasteurella haemolytica leukotoxin. Infection and Immunity 55: 23482354.CrossRefGoogle Scholar
Clarke, CR, Confer, AW and Mosier, DA (1998). In vivo effect of Pasteurella haemolytica infection on bovine neutrophil morphology. American Journal of Veterinary Research 59: 588592.CrossRefGoogle ScholarPubMed
Clinkenbeard, KD and Upton, ML (1991). Lysis of bovine platelets by Pasteurella haemolytica leukotoxin. American Journal of Veterinary Research 52: 453457.CrossRefGoogle ScholarPubMed
Clinkenbeard, KD, Mosier, DA and Confer, AW (1989). Transmembrane pore size and role of cell swelling in cytotoxicity caused by Pasteurella haemolytica leukotoxin. Infection and Immunity 57: 420425.CrossRefGoogle ScholarPubMed
Confer, AW and Simons, KR (1986). Effects of Pasteurella haemolytica lipopolysaccharide on selected functions of bovine leukocytes. American Journal of Veterinary Research 47: 154157.Google ScholarPubMed
Confer, AW, Panciera, RJ, Gentry, MJ and Fulton, RW (1986). Serum antibodies against Pasteurella haemolytica lipopolysaccharide: relationship to experimental bovine pneumonic pasteurellosis. American Journal of Veterinary Research 47: 11341138.Google ScholarPubMed
Confer, AW, Simons, KR, Panciera, RJ, Mort, AJ and Mosier, DA (1989). Serum antibody response to carbohydrate antigens of Pasteurella haemolytica serotype 1: relation to experimentally induced bovine pneumonic pasteurellosis. American Journal of Veterinary Research 50: 98105.Google ScholarPubMed
Confer, AW, Fulton, RW, Clinkenbeard, KD and Driskell, BA (1998). Duration of serum antibody responses following vaccination and revaccination of cattle with non-living commercial Pasteurella haemolytica vaccines. Vaccine 16: 19621970.CrossRefGoogle ScholarPubMed
Confer, AW, Ayalew, S, Panciera, RJ, Montelongo, M, Whitworth, LC and Hammer, JD (2003). Immunogenicity of recombinant Mannheimia haemolytica serotype 1 outer membrane protein PlpE and augmentation of a commercial vaccine. Vaccine 21: 28212829.CrossRefGoogle ScholarPubMed
Confer, AW, Ayalew, S, Panciera, RJ, Montelongo, M and Wray, JH (2006). Recombinant Mannheimia haemolytica serotype 1 outer membrane protein PlpE enhances commercial M. haemolytica vaccine-induced resistance against serotype 6 challenge. Vaccine 24: 22482255.CrossRefGoogle ScholarPubMed
Conlon, JA and Shewen, PE (1993). Clinical and serological evaluation of a Pasteurella haemolytica A1 capsular polysaccharide vaccine. Vaccine 11: 767772.CrossRefGoogle ScholarPubMed
Cooney, BJ and Lo, RY (1993). Three contiguous lipoprotein genes in Pasteurella haemolytica A1 which are homologous to a lipoprotein gene in Haemophilus influenzae type b. Infection and Immunity 61: 46824688.CrossRefGoogle ScholarPubMed
Coote, JG (1992). Structural and functional relationships among the RTX toxin determinants of gram-negative bacteria. FEMS Microbiology Reviews 8: 137161.CrossRefGoogle ScholarPubMed
Cudd, LA, Ownby, CL, Clarke, CR, Sun, Y and Clinkenbeard, KD (2001). Effects of Mannheimia haemolytica leukotoxin on apoptosis and oncosis of bovine neutrophils. American Journal of Veterinary Research 62: 136141.CrossRefGoogle ScholarPubMed
Czuprynski, CJ, Noel, EF and Adlam, C (1989). Modulation of bovine neutrophil antibacterial activities by Pasteurella haemolytica A1 purified capsular polysaccharide. Microbial Pathogenesis 6: 133141.CrossRefGoogle ScholarPubMed
Dassanayake, RP, Maheswaran, SK and Srikumaran, S (2007). Monomeric expression of bovine beta2-integrin subunits reveals their role in Mannheimia haemolytica leukotoxin-induced biological effects. Infection and Immunity 75: 50045010.CrossRefGoogle ScholarPubMed
Davies, RL and Donachie, W (1996). Intra-specific diversity and host specificity within Pasteurella haemolytica based on variation of capsular polysaccharide, lipopolysaccharide and outer-membrane proteins. Microbiology 142: 18951907.CrossRefGoogle ScholarPubMed
Davies, RL and Baillie, S (2003). Cytotoxic activity of Mannheimia haemolytica strains in relation to diversity of the leukotoxin structural gene lktA. Veterinary Microbiology 92: 263279.CrossRefGoogle ScholarPubMed
Davies, RL, Whittam, TS and Selander, RK (2001). Sequence diversity and molecular evolution of the leukotoxin (lktA) gene in bovine and ovine strains of Mannheimia (Pasteurella) haemolytica. Journal of Bacteriology 183: 13941404.CrossRefGoogle ScholarPubMed
Davies, RL, Campbell, S and Whittam, TS (2002). Mosaic structure and molecular evolution of the leukotoxin operon (lktCABD) in Mannheimia (Pasteurella) haemolytica, Mannheimia glucosida, and Pasteurella trehalosi. Journal of Bacteriology 184: 266277.CrossRefGoogle ScholarPubMed
DeBey, BM, Roth, JA, Brogden, KA, Cutlip, RC, Stevens, MG, Briggs, RE and Kluge, JP (1996). In vitro lymphocyte responses and gamma-interferon production as measures of cell-mediated immunity of cattle exposed to Pasteurella haemolytica. Canadian Journal of Veterinary Research 60: 263270.Google ScholarPubMed
Deshpande, MS, Ambagala, TC, Ambagala, AP, JrKehrli, ME and Srikumaran, S (2002). Bovine CD18 is necessary and sufficient to mediate Mannheimia (Pasteurella) haemolytica leukotoxin-induced cytolysis. Infection and Immunity 70: 50585064.CrossRefGoogle ScholarPubMed
Donachie, W (1999). Cattle pasteurellosis vaccine. Moredun Research Institute Annual Report for 1999, p. 10. www.moredun.org.ukGoogle Scholar
Ewers, C, Lubke-Becker, A and Wieler, LH (2004). Mannheimia haemolytica and the pathogenesis of enzootic bronchopneumonia. Berliner und Münchener Tierärztliche Wochenschrift 117: 97115.Google ScholarPubMed
Farley, H (1932). An epizoological study of shipping fever in Kansas. Journal of the American Veterinary Medical Association 52: 165172.Google Scholar
Fedorova, ND and Highlander, SK (1997). Generation of targeted nonpolar gene insertions and operon fusions in Pasteurella haemolytica and creation of a strain that produces and secretes inactive leukotoxin. Infection and Immunity 65: 25932598.CrossRefGoogle ScholarPubMed
Filion, LG, Willson, PJ, Bielfeldt-Ohmamn, H, Babiuk, LA and Thomson, RG (1984). The possible role of stress in the induction of pneumonic pasteurellosis. Canadian Journal of Comparative Medicine 48: 268274.Google ScholarPubMed
Frank, GH (1984). Bacteria as etiologic agents in bovine respiratory disease. In: Loan, RW (ed.) Bovine Respiratory Disease. College Station, TX: Texas A&M University Press.Google Scholar
Frank, GH (1989). Pasteurellosis of cattle. In: Adlam, C and Rutter, JM (eds) Pasteurella and Pasteurellosis. London: Academic Press, pp. 197222.Google Scholar
Frank, GH and Briggs, RE (1992). Colonization of the tonsils of calves with Pasteurella haemolytica. American Journal of Veterinary Research 53: 481484.CrossRefGoogle ScholarPubMed
Frank, GH and Smith, PC (1983). Prevalence of Pasteurella haemolytica in transported calves. American Journal of Veterinary Research 44: 981985.Google ScholarPubMed
Frank, GH and Tabatabai, LB (1981). Neuraminidase activity of Pasteurella haemolytica isolates. Infection and Immunity 32: 11191122.CrossRefGoogle ScholarPubMed
Frank, GH, Briggs, RE, Loan, RW, Purdy, CW and Zehr, ES (1994). Serotype-specific inhibition of colonization of the tonsils and nasopharynx of calves with Pasteurella haemolytica serotype A1 after vaccination with the organism. American Journal of Veterinary Research 55: 11071110.CrossRefGoogle ScholarPubMed
Frank, GH, Briggs, RE and Zehr, ES (1995). Colonization of the tonsils and nasopharynx of calves by rifampicin-resistant Pasteurella haemolytica and its inhibition by vaccination. American Journal of Veterinary Research 56: 866869.CrossRefGoogle ScholarPubMed
Friend, SC, Wilkie, BN, Thomson, RG and Barnum, DA (1977). Bovine pneumonic pasteurellosis: experimental induction in vaccinated and nonvaccinated calves. Canadian Journal of Comparative Medicine 41: 7783.Google ScholarPubMed
Gahmberg, CG (1997). Leukocyte adhesion: CD11/CD18 integrins and intercellular adhesion molecules. Current Opinion in Cell Biology 9: 643650.CrossRefGoogle ScholarPubMed
Gatewood, DM, Fenwick, BW and Chengappa, MM (1994). Growth-condition dependent expression of Pasteurella haemolytica A1 outer membrane proteins, capsule, and leukotoxin. Veterinary Microbiology 41: 221233.CrossRefGoogle ScholarPubMed
Gentry, MJ, Confer, AW and Panciera, RJ (1985). Serum neutralization of cytotoxin from Pasteurella haemolytica, serotype 1 and resistance to experimental bovine pneumonic pasteurellosis. Veterinary Immunology and Immunopathology 9: 239250.CrossRefGoogle ScholarPubMed
Gibbs, HA, Allan, EM, Wiseman, A and Selman, IE (1984). Experimental production of bovine pneumonic pasteurellosis. Research in Veterinary Science 37: 154166.CrossRefGoogle ScholarPubMed
Gilmour, NJ, Donachie, W, Sutherland, AD, Gilmour, JS, Jones, GE and Quirie, M (1991). Vaccine containing iron-regulated proteins of Pasteurella haemolytica A2 enhances protection against experimental pasteurellosis in lambs. Vaccine 9: 137140.CrossRefGoogle ScholarPubMed
Gorham, PE, Carroll, LH, McAskill, JW, Watkins, LE, Ose, EE, Tonkinson, LV and Merrill, JK (1990). Tilmicosin as a single injection treatment for respiratory disease of feedlot cattle. Canadian Veterinary Journal 31: 826829.Google ScholarPubMed
Grey, CL and Thomson, RG (1971). Pasteurella haemolytica in the tracheal air of calves. Canadian Journal of Comparative Medicine 35: 121128.Google ScholarPubMed
Gonzalez-Rayos, C, Lo, RY, Shewen, PE and Beveridge, TJ (1986). Cloning of a serotype-specific antigen from Pasteurella haemolytica A1. Infection and Immunity 53: 505510.CrossRefGoogle ScholarPubMed
Hamdy, AH, King, NB and Trapp, AL (1965). Attempted immunization of cattle against shipping fever: a field trial. American Journal of Veterinary Research 26: 897902.Google Scholar
Harland, RJ, Jim, GK, Guichon, PT, Townsend, HGG and Janzen, ED (1991). Efficacy of parenteral antibiotics for disease prophylaxis in feedlot calves. Canadian Veterinary Journal 32: 163168.Google ScholarPubMed
Highlander, SK, Chidambaram, M, Engler, MJ and Weinstock, GM (1989). DNA sequence of the Pasteurella haemolytica leukotoxin gene cluster. DNA 8: 1528.CrossRefGoogle ScholarPubMed
Highlander, SK, Fedorova, ND, Dusek, DM, Panciera, R, Alvarez, LE and Rinehart, C (2000). Inactivation of Pasteurella (Mannheimia) haemolytica leukotoxin causes partial attenuation of virulence in a calf challenge model. Infection and Immunity 68: 39163922.CrossRefGoogle Scholar
Hirsh, DC and Zee, YC (1999). Veterinary Microbiology. Boston, MA: Blackwell Scientific Publications, pp. 135140.Google Scholar
Hjerpe, CA (1990). Bovine vaccines and herd vaccination programs. Veterinary Clinics of North America: Food Animal Practice 6: 171260.Google ScholarPubMed
Hoar, BR, Jelinski, MD, Ribble, CS, Janzen, ED and Johnson, JC (1998). A comparison of the clinical field efficacy and safety of florfenicol and tilmicosin for the treatment of undifferentiated bovine respiratory disease of cattle in western Canada. Canadian Veterinary Journal 39: 161166.Google ScholarPubMed
Issartel, JP, Koronaskis, V and Hughes, C (1991). Activation of Escherichia coli prohaemolysin to the mature toxin by acyl carrier protein-dependent fatty acylation. Nature 351: 759761.CrossRefGoogle Scholar
Jaramillo, L, Diaz, F, Hernandez, P, Debray, H, Trigo, F, Mendoza, G and Zenteno, E (2000). Purification and characterization of an adhesin from Pasteurella haemolytica. Glycobiology 10: 3137.CrossRefGoogle ScholarPubMed
Jericho, KWF (1979). Update on pasteurellosis in young cattle. Canadian Veterinary Journal 20: 333335.Google ScholarPubMed
Jeyaseelan, S, Hsuan, SL, Kannan, MS, Walcheck, B, Wang, JF, Kehrli, ME, Lally, ET, Sieck, GC and Maheswaran, SK (2000). Lymphocyte function-associated antigen 1 is a receptor for Pasteurella haemolytica leukotoxin in bovine leukocytes. Infection and Immunity 68: 7279.CrossRefGoogle ScholarPubMed
Jeyaseelan, S, Kannan, MS, Briggs, RE, Thumbikat, P and Maheswaran, SK (2001). Mannheimia haemolytica leukotoxin activates a nonreceptor tyrosine kinase signaling cascade in bovine leukocytes, which induces biological effects. Infection and Immunity 69: 61316139.CrossRefGoogle ScholarPubMed
Jeyaseelan, S, Sreevatsan, S and Maheswaran, SK (2002). Role of Mannheimia haemolytica leukotoxin in the pathogenesis of bovine pneumonic pasteurellosis. Animal Health Research Reviews 3: 6982.CrossRefGoogle ScholarPubMed
Jim, GK, Booker, CW, Guichon, PT, Schunicht, OC, Wildman, BK, Johnson, JC and Lockwood, PW (1999). A comparison of florfenicol and tilmicosin for the treatment of undifferentiated fever in feedlot calves in western Canada. Canadian Veterinary Journal 40: 179184.Google ScholarPubMed
Jim, K, Guichon, T and Shaw, G (1988). Protecting calves from pneumonic pasteurellosis. Veterinary Medicine 83: 10841087.Google Scholar
Jubb, KVF and Kennedy, PC (1970). Pathology of Domestic Animals, 2nd edn.New York: Academic Press.Google Scholar
Keiss, RE, Will, DH and Collier, JR (1964). Skin toxicity and hemodynamic properties of endotoxin derived from Pasteurella haemolytica. American Journal of Veterinary Research 25: 935941.Google Scholar
Kelly, AP and Janzen, ED (1986). A review of morbidity and mortality rates and disease occurrence in North American feedlot cattle. Canadian Veterinary Journal 27: 496500.Google ScholarPubMed
Kesler, DJ and Bechtol, DT (1999). Efficacy of sustained release needle-less ceftiofur sodium implants in treating calves with bovine respiratory disease. Zentralblatt für Veterinärmedizin [B] 46: 2535.Google ScholarPubMed
Kiorpes, AL, Butler, DG, Dubielzig, RR and Beck, KA (1988). Enzootic pneumonia in calves: clinical and morphological features. Compendium for the Continuing Education of the Practicing Veterinarian 10: 248260.Google Scholar
Kitt, T (1885). Uber eine experimentelle de Rinderseuche ahnliche Infektionskrankheit. Sitzungsberichte der Gesellschaft für Morphologie und Physiologic in München. pp. 140168.Google Scholar
Lainson, FA, Murray, J, Davis, RC and Donachie, W (1996). Characterization of epitopes involved in the neutralization of Pasteurella haemolytica serotype A1 leukotoxin. Microbiology 142: 24992507.CrossRefGoogle ScholarPubMed
Lally, ET, Kieba, IR, Sato, A, Green, C, Rosenbloom, J, Korostoff, J, Wang, JF, Shenker, BJ, Otrlepp, S, Robinson, MK and Billings, PC (1997). RTX toxins recognize a beta2 integrin on the surface of human target cells. Journal of Biological Chemistry 272: 3046330469.CrossRefGoogle ScholarPubMed
Lally, ET, Hill, RB, Kieba, IR and Korostoff, J (1999). The interaction between RTX toxins and target cells. Trends in Microbiology 7: 356361.CrossRefGoogle ScholarPubMed
Lee, CW and Shewen, PE (1996). Evidence of bovine immunoglobulin G1 (IgG1) protease activity in partially purified culture supernate of Pasteurella haemolytica A1. Canadian Journal of Veterinary Research 60: 127132.Google ScholarPubMed
Lee, CW, Shewen, PE, Cladman, WM, Conlon, JA, Mellors, A and Lo, RY (1994). Sialoglycoprotease of Pasteurella haemolytica A1: detection of antisialoglycoprotease antibodies in sera of calves. Canadian Journal of Veterinary Research 58: 9398.Google ScholarPubMed
Lee, RW, Strommer, J, Hodgins, D, Shewen, PE, Niu, Y and Lo, RYC (2001). Towards development of an edible vaccine against bovine pneumonic pasteurellosis using transgenic white clover expressing a Mannheimia haemolytica leukotoxin 50 fusion protein. Infection and Immunity 69: 57865793.CrossRefGoogle ScholarPubMed
Li, J and Clinkenbeard, KD (1999). Lipopolysaccharide complexes with Pasteurella haemolytica leukotoxin. Infection and Immunity 67: 29202927.CrossRefGoogle ScholarPubMed
Li, J, Clinkenbeard, KD and Ritchey, JW (1999). Bovine CD18 identified as a species specific receptor for Pasteurella haemolytica leukotoxin. Veterinary Microbiology 67: 9197.CrossRefGoogle ScholarPubMed
Libersa, H, Van Huffel, B and Madelenat, A (1995). Evaluation of the efficacy of a new antibiotic, florfenicol (Nuflor) in the treatment of bovine respiratory disease. Recueil de Médecine Vétérinaire 171: 3944.Google Scholar
Lillie, LE and Thomson, RG (1972). The pulmonary clearance of bacteria by calves and mice. Canadian Journal of Comparative Medicine 36: 129137.Google ScholarPubMed
Lo, RY (1990). Molecular characterization of cytotoxins produced by Haemophilus, Actinobacillus, Pasteurella. Canadian Journal of Veterinary Research 54: S33S35.Google ScholarPubMed
Lo, RYC and Shewen, PE (1991). The genus Pasteurella. In: Balows, A, Truper, HG, Dworkin, M, Harder, W and Schliefer, KH (eds) The Prokaryotes, 2nd edn.New York: Springer-Verlag.Google Scholar
Lo, RYC, Shewen, PE, Strathdee, CA and Greer, CN (1985). Cloning and expression of the leukotoxin gene of Pasteurella haemeolytica A1 in Escherichia coli K-12. Infection and Immunity 50: 557571.CrossRefGoogle ScholarPubMed
Lo, RYC, Strathdee, CA and Shewen, PE (1987). Nucleotide sequence of the leukotoxin genes of Pasteurella haemolytica A1. Infection and Immunity 55: 19871996.CrossRefGoogle ScholarPubMed
Lo, RY, Strathdee, CA, Shewen, PE and Cooney, BJ (1991). Molecular studies of Ssa1, a serotype-specific antigen of Pasteurella haemolytica A1. Infection and Immunity 59: 33983406.CrossRefGoogle ScholarPubMed
Lopez, A, Thomson, RG and Savan, M (1976). The pulmonary clearance of Pasteurella haemolytica in calves infected with bovine parainfluenza 3 virus. Canadian Journal of Comparative Medicine 40: 385391.Google Scholar
Martin, SW (1983). Vaccination: is it effective in preventing respiratory disease or influencing weight gains in feedlot calves? Canadian Veterinary Journal 24: 1019.Google ScholarPubMed
Martin, SW (1989). An overview of field trials in veterinary medicine. Canadian Veterinary Journal 30: 302303.Google ScholarPubMed
Mechor, GD, Jim, GK and Janzen, ED (1988). Comparison of penicillin, oxytetracycline, and trimethoprim-sulfadoxine in the treatment of acute undifferentiated bovine respiratory disease. Canadian Veterinary Journal 29: 438443.Google ScholarPubMed
Miller, AW, Howard, LH, Bayard, ES, Smith, RW, Stanard, SJ, Jones, JD, Hilton, G, Killham, BJ and Truam, J (1927). Report of committee on miscellaneous transmissible diseases. Journal of the American Veterinary Medical Association 70: 952955.Google Scholar
Morck, DW, Raybould, TJ, Acres, SD, Babiuk, LA, Nelligan, J and Costerton, JW (1987). Electron microscopic description of glycocalyx and fimbriae on the surface of Pasteurella haemolytica-A1. Canadian Journal of Veterinary Research 51: 8388.Google ScholarPubMed
Morck, DW, Watts, TC, Acres, SD and Costerton, JW (1988). Electron microscopic examination of cells of Pasteurella haemolytica A1 in experimentally infected cattle. Canadian Journal of Veterinary Research 52: 343348.Google ScholarPubMed
Morck, DW, Olson, ME, Acres, SD, Daoust, PY and Costerton, JW (1989). Presence of bacterial glycocalyx and fimbriae on Pasteurella haemolytica in feedlot cattle with pneumonic pasteurellosis. Canadian Journal of Veterinary Research 53: 167171.Google ScholarPubMed
Morck, DW, Ellis, BD, Domingue, PA, Olson, ME and Costerton, JW (1991). In vivo expression of iron regulated outer-membrane proteins in Pasteurella haemolytica-A1. Microbial Pathogenesis 11: 373378.CrossRefGoogle ScholarPubMed
Morton, RJ, Simons, KR and Confer, AW (1996). Major outer membrane proteins of Pasteurella haemolytica serovars 1–15: comparison of separation techniques and surface-exposed proteins on selected serovars. Veterinary Microbiology 51: 319330.CrossRefGoogle ScholarPubMed
Mosier, DA, Confer, AW and Panciera, RJ (1989). The evolution of vaccines for bovine pneumonic pasteurellosis. Research in Veterinary Science 47: 110.CrossRefGoogle ScholarPubMed
Mosier, DA, Simons, KR and Vestweber, JG (1995). Passive protection of calves with Pasteurella haemolytica antiserum. American Journal of Veterinary Research 56: 13171321.CrossRefGoogle ScholarPubMed
Mosier, DA, Panciera, RJ, Rogers, DP, Uhlich, GA, Butine, MD, Confer, AW and Basaraba, RJ (1998). Comparison of serologic and protective responses induced by two Pasteurella vaccines. Canadian Journal of Veterinary Research 62: 178182.Google ScholarPubMed
Murphy, GL, Whitworth, LC, Clinkenbeard, KD and Clinkenbeard, PA (1995). Haemolytic activity of Pasteurella haemolytica leukotoxin. Infection and Immunity 63: 32093212.CrossRefGoogle ScholarPubMed
Nardini, PM, Mellors, A and Lo, RY (1998). Characterization of a fourth lipoprotein from Pasteurella haemolytica A1 and its homology to the OmpA family of outer membrane proteins. FEMS Microbiology Letters 165: 7177.CrossRefGoogle Scholar
Newsome, IE and Cross, F (1932). Some bipolar organisms found in pneumonia in sheep. Journal of the American Veterinary Medical Association 80: 711719.Google Scholar
Ogunnariwo, JA and Schryvers, AB (1990). Iron acquisition in Pasteurella haemolytica: expression and identification of a bovine-specific transferrin receptor. Infection and Immunity 58: 20912097.CrossRefGoogle ScholarPubMed
Orrenius, S, Zhivotovsky, B and Nicotera, P (2003). Regulation of cell death: the calcium-apoptosis link. Nature Reviews. Molecular Cell Biology 4: 552565.CrossRefGoogle ScholarPubMed
Pandher, K, Confer, AW and Murphy, GL (1998). Genetic and immunologic analyses of PlpE, a lipoprotein important in complement-mediated killing of Pasteurella haemolytica serotype 1. Infection and Immunity 66: 56135619.CrossRefGoogle ScholarPubMed
Pandher, K, Murphy, GL and Confer, AW (1999). Identification of immunogenic, surface-exposed outer membrane proteins of Pasteurella haemolytica serotype 1. Veterinary Microbiology 65: 215226.CrossRefGoogle ScholarPubMed
Potter, AA, Schryvers, AB, Ogunnariwo, JA, Hutchins, WA, Lo, RY and Watts, T (1999). Protective capacity of the Pasteurella haemolytica transferrin-binding proteins TbpA and TbpB in cattle. Microbial Pathogenesis 27: 197206.CrossRefGoogle ScholarPubMed
Purdy, CW, Livingston, CW and Frank, GH (1986). A live Pasteurella haemolytica vaccine efficacy trial. Journal of the American Veterinary Medical Association 188: 589591.Google ScholarPubMed
Purdy, CW, Richards, AB and Foster, GS (1991). Market stress-associated changes in serum complement activity in feeder calves. American Journal of Veterinary Research 52: 18421847.CrossRefGoogle ScholarPubMed
Purdy, CW, Raleigh, RH, Collins, JK, Watts, JL and Straus, DC (1997). Serotyping and enzyme characterizations of Pasteurella haemolytica and Pasteurella multocida isolates recovered from pneumonic lungs of stressed feeder calves. Current Microbiology 34: 244249.CrossRefGoogle ScholarPubMed
Quinn, PJ (1994). Clinical Veterinary Microbiology. London: Wolfe, pp. 254258.Google Scholar
Radostits, OM, Blood, DC and Gay, CC (1994). Veterinary Medicine, 8th edn.London: Bailliere Tindall.Google Scholar
Ribble, CS (1989). Design considerations in clinical trials. Canadian Veterinary Journal 30: 292294.Google ScholarPubMed
Ribble, CS, Meek, AH, Shewen, PE, Guichon, PT and Jim, GK (1995a). Effect of pretransit mixing on fatal fibrinous pneumonia in calves. Journal of the American Veterinary Medical Association 207: 616619.CrossRefGoogle ScholarPubMed
Ribble, CS, Meek, AH, Jim, GK and Guichon, PT (1995b). The pattern of fatal fibrinous pneumonia (shipping fever) affecting calves in a large feedlot in Alberta (1985–1988. Canadian Veterinary Journal 36: 753757.Google Scholar
Rossi, C and Kiesel, GK (1977). Susceptibility of bovine macrophages and tracheal-ring cultures to bovine viruses. American Journal of Veterinary Research 38: 17051708.Google ScholarPubMed
Schipper, IA and Kelling, CL (1971). Shipping fever prophylaxis: comparison of vaccine and antibiotics administered following weaning. Canadian Veterinary Journal 12: 172175.Google ScholarPubMed
Schumann, FJ, Janzen, ED and McKinnon, JJ (1990). Prophylactic tilmicosin medication of feedlot calves at arrival. Canadian Veterinary Journal 31: 285288.Google ScholarPubMed
Schunicht, OC, Booker, CW, Guichon, PT, Jim, KG, Wildman, BK, Pitman, TJ and Perrett, T (2007). An evaluation of the relative efficacy of tulathromycin for the treatment of undifferentiated fever in feedlot calves in Nebraska. Canadian Veterinary Journal 48: 600606.Google ScholarPubMed
Shewen, PE and Conlon, JA (1993). Pasteurella. In: Gyles, CL and Thoen, CO (eds) Pathogenesis of Bacterial Infections in Animals, 2nd edn.Ames, IA: Iowa State University, pp. 216225.Google Scholar
Shewen, PE and Wilkie, BN (1982). Cytotoxin of Pasteurella haemolytica acting on bovine leukocytes. Infection and Immunity 35: 9194.CrossRefGoogle ScholarPubMed
Shewen, PE and Wilkie, BN (1983). Pasteurella haemolytica cytotoxin: production by recognized serotypes and neutralization by type-specific rabbit antisera. American Journal of Veterinary Research 44: 715719.Google ScholarPubMed
Shewen, PE and Wilkie, BN (1985). Evidence for the Pasteurella haemolytica cytotoxin as a product of actively growing bacteria. American Journal of Veterinary Research 46: 12121214.Google ScholarPubMed
Shewen, PE and Wilkie, BN (1988). Vaccination of calves with leukotoxic culture supernatant from Pasteurella haemolytica. Canadian Journal of Veterinary Research 52: 3036.Google ScholarPubMed
Shewen, PE, Sharp, A and Wilkie, BN (1988). Efficacy testing a Pasteurella haemolytica extract vaccine. Veterinary Medicine 83: 10781083.Google Scholar
Slocombe, RF, Derksen, FJ, Robinson, NE, Trapp, A, Gupta, A and Newman, JP (1984). Interactions of cold stress and Pasteurella haemolytica in the pathogenesis of pneumonic pasteurellosis in calves: method of induction and hematologic and pathologic changes. American Journal of Veterinary Research 45: 17571763.Google ScholarPubMed
Slocombe, RF, Malark, J, Ingersoll, R, Derksen, FJ and Robinson, NE (1985). Importance of neutrophils in the pathogenesis of acute pneumonic pasteurellosis in calves. American Journal of Veterinary Research 46: 22532258.Google ScholarPubMed
Smith, CK, Davidson, JN and Henry, CW (1985). Evaluating a live vaccine for Pasteurella haemolytica in dairy calves. Veterinary Medicine 80: 7888.Google Scholar
Smith, GR (1961). The characteristics of two types of Pasteurella haemolytica associated with different pathological conditions of sheep. Journal of Pathology and Bacteriology 81: 431440.CrossRefGoogle Scholar
Sneath, PH and Stevens, M (1990). Actinobacillus rossii sp. nov., Actinobacillus seminis sp. nov., nom. rev., Pasteurella bettii sp. nov., Pasteurella lymphangitidis sp. nov., Pasteurella mairi sp. nov., and Pasteurella trehalosi sp. nov. International Journal of Systematic Bacteriology 40: 148153.CrossRefGoogle ScholarPubMed
Squire, PG, Smiley, DW and Croskell, RB (1984). Identification and extraction of Pasteurella haemolytica membrane proteins. Infection and Immunity 45: 667673.CrossRefGoogle ScholarPubMed
Srinand, S, Hsuan, SL, Yoo, HS, Maheswaran, SK, Ames, TR and Werdin, RE (1996). Comparative evaluation of antibodies induced by commercial Pasteurella haemolytica vaccines using solid phase immunoassays. Veterinary Microbiology 49: 181195.CrossRefGoogle ScholarPubMed
Strathdee, CA and Lo, RY (1987). Extensive homology between the leukotoxin of Pasteurella haemolytica A1 and the alpha-hemolysin of Escherichia coli. Infection and Immunity 55: 32333236.CrossRefGoogle ScholarPubMed
Strathdee, CA and Lo, RY (1989). Cloning, nucleotide sequence and characterization of genes encoding the secretion function of the Pasteurella haemolytica leukotoxin determinant. Journal of Bacteriology 171: 916928.CrossRefGoogle ScholarPubMed
Straus, DC and Purdy, CW (1994). In vivo production of neuraminidase by Pasteurella haemolytica A1 in goats after transthoracic challenge. Infection and Immunity 62: 46754678.CrossRefGoogle ScholarPubMed
Straus, DC, Purdy, CW, Loan, RW, Briggs, RF and Frank, GH (1998). In vivo production of neuraminidase by Pasteurella haemolytica in market stressed cattle after natural infection. Current Microbiology 37: 240244.CrossRefGoogle ScholarPubMed
Sun, Y, Clinkenbeard, KD, Cudd, LA, Clarke, CR and Clinkenbeard, PA (1999). Correlation of Pasteurella haemolytica leukotoxin binding with susceptibility to intoxication of lymphoid cells from various species. Infection and Immunity 67: 62646269.CrossRefGoogle ScholarPubMed
Sun, Y, Clinkenbeard, KD, Ownby, CL, Cudd, LA, Clarke, CR and Highlander, SK (2000). Ultrastructural characterization of apoptosis in bovine lymphocytes exposed to Pasteurella haemolytica leukotoxin. American Journal of Veterinary Research 61: 5156.CrossRefGoogle ScholarPubMed
Tatum, FM, Briggs, RE, Sreevatsan, SS, Zehr, ES, Hsuan, SL, Whiteley, LO, Ames, TR and Maheswaran, SK (1998). Construction of an isogenic leukotoxin deletion mutant of Pasteurella haemolytica serotype 1: characterization and virulence. Microbial Pathogenesis 24: 3746.CrossRefGoogle ScholarPubMed
Thomson, RG (1984). Pathogenesis of pneumonia in feedlot cattle. In: Loan, RW (ed.) Bovine Respiratory Disease. College Station, TX: Texas A&M University Press.Google Scholar
Thorlakson, B, Martin, W and Peters, D (1990). A field trial to evaluate the efficacy of a commercial Pasteurella haemolytica bacterial extract in preventing bovine respiratory disease. Canadian Veterinary Journal 31: 573579.Google ScholarPubMed
Ulevitch, RJ and Tobias, PS (1995). Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annual Review of Immunology 13: 437457.CrossRefGoogle ScholarPubMed
Van Donkersgoed, J (1992). Meta-analysis of field trials of antimicrobial mass medication for prophylaxis of bovine respiratory disease in feedlot cattle. Canadian Veterinary Journal 33: 786795.Google ScholarPubMed
Van Donkersgoed, J, Ribble, CS, Boyer, LG and Townsend, HG (1993a). Epidemiological study of enzootic pneumonia in dairy calves in Saskatchewan. Canadian Journal of Veterinary Research 57: 247254.Google ScholarPubMed
Van Donkersgoed, J, Schumann, FJ, Harland, RJ, Potter, AA and Janzen, ED (1993b). The effect of route and dosage of immunization on the serological response to a Pasteurella haemolytica and Haemophilus somnus vaccine in feedlot calves. Canadian Veterinary Journal 34: 731735.Google ScholarPubMed
Van Donkersgoed, J, Potter, AA, Mollinson, B and Harland, RJ (1994). The effect of a combined Pasteurella haemolytica and Haemophilus somnus vaccine and a modified-live bovine respiratory syncytial virus vaccine against enzootic pneumonia in young beef calves. Canadian Veterinary Journal 35: 239241.Google Scholar
Van Donkersgoed, J, Guenther, C, Evans, BN, Potter, AA and Harland, RJ (1995). Effects of various vaccination protocols on passive and active immunity to Pasteurella haemolytica and Haemophilus somnus in beef calves. Canadian Veterinary Journal 36: 424429.Google ScholarPubMed
Varma, KJ, Lockwood, PW, Cosgrove, SB and Rogers, ER (1998). Pharmacology, safety, and clinical efficacy of Nuflor (florfenicol) following subcutaneous administration to cattle. Proceedings of the Symposium ‘Nuflor – New Therapeutic Applications’ held in conjunction with the XX World Buiatrics Congress, Sydney, Australia, pp. 1319.Google Scholar
Vogel, GJ, Laudert, SB, Zimmermann, A, Guthrie, CA, Mechor, GD and Moore, GM (1998). Effects of tilmicosin on acute undifferentiated respiratory tract disease in newly arrived feedlot cattle. Journal of the American Veterinary Medical Association 212: 19191924.CrossRefGoogle ScholarPubMed
Wang, JF, Kieba, IR, Korostoff, J, Guo, TL, Yamaguchi, N, Rozmiarek, H, Billings, PC, Shenker, BJ and Lally, ET (1998a). Molecular and biochemical mechanisms of Pasteurella haemolytica leukotoxin-induced cell death. Microbial Pathogenesis 25: 317331.CrossRefGoogle ScholarPubMed
Wang, Z, Clarke, C and Clinkenbeard, K (1998b). Pasteurella haemolytica leukotoxin-induced increase in phospholipase A2 activity in bovine neutrophils. Infection and Immunity 66: 18851890.CrossRefGoogle ScholarPubMed
Watts, JL, JrYancey, RJ, Salmon, SA and Case, CA (1994). A 4-year survey of antimicrobial susceptibility trends for isolates from cattle with bovine respiratory disease in North America. Journal of Clinical Microbiology 32: 725731.CrossRefGoogle ScholarPubMed
Weiss, DJ, Bauer, MC, Whiteley, LO, Maheswaran, SK and Ames, TR (1991). Changes in blood and bronchoalveolar lavage fluid components in calves with experimentally induced pneumonic pasteurellosis. American Journal of Veterinary Research 52: 337344.CrossRefGoogle ScholarPubMed
Wellman, NG and O'Connor, AM (2007). Meta-analysis of treatment of cattle with bovine respiratory disease with tulathromycin. Journal of Veterinary Pharmacology and Therapeutics 30: 234241.CrossRefGoogle ScholarPubMed
Welsh, RD, Dye, LB, Payton, ME and Confer, AW (2004). Isolation and antimicrobial susceptibilities of bacterial pathogens from bovine pneumonia: 1994–2002. Journal of Veterinary Diagnostic Investigation 16: 426431.CrossRefGoogle ScholarPubMed
Whiteley, LO, Maheswaran, SK, Weiss, DJ, Ames, TR and Kannan, MS (1992). Pasteurella haemolytica A1 and bovine respiratory disease: pathogenesis. Journal of Veterinary Internal Medicine 6: 1122.CrossRefGoogle ScholarPubMed
Wilkie, BN, Markham, RJ and Shewen, PE (1980). Response of calves to lung challenge exposure with Pasteurella haemolytica after parenteral or pulmonary immunization. American Journal of Veterinary Research 41: 17731778.Google ScholarPubMed
Wilson, SH (1989). Why are meaningful field trials difficult to achieve for bovine respiratory disease vaccines? Canadian Veterinary Journal 30: 299302.Google ScholarPubMed
Woldehiwet, Z and Sharma, R (1992). Evidence of immunosuppression by bovine respiratory syncytial virus. Scandinavian Journal of Immunology 11: 7580.CrossRefGoogle ScholarPubMed
Younan, M and Fodor, L (1995). Characterization of a new Pasteurella haemolytica serotype (A17). Research in Veterinary Science 58: 98.CrossRefGoogle ScholarPubMed
Young, C (1995). Antimicrobial metaphylaxis for undifferentiated bovine respiratory disease. Compendium on Continuing Education for the Practicing Veterinarian 17: 133142.Google Scholar