Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T15:39:50.034Z Has data issue: false hasContentIssue false

Antimicrobial resistance in swine production

Published online by Cambridge University Press:  05 November 2008

Frank M. Aarestrup*
Affiliation:
National Food Institute, Technical University of Denmark, Bulowsvej 27, DK-1790 Copenhagen V, Denmark
C. Oliver Duran
Affiliation:
Moss Veterinary Partners IDA Estate, Monread Road, Naas, Co. Kildare, Ireland
David G. S. Burch
Affiliation:
Octagon Services Ltd, Old Windsor, Berkshire, UK
*
*Corresponding author. E-mail: [email protected]

Abstract

Large amounts of antimicrobial agents are still being used in modern swine production in many countries around the world. This facilitates the emergence and development of antimicrobial resistance. Bacteria causing infections in swine have in several cases acquired resistance to a number of the agents most commonly used for treatment, making it difficult to predict the efficacy of different antimicrobial agents without prior susceptibility testing. This review gives an overview of recent susceptibility data from different parts of the world and discusses the importance of the development of resistance not only in the treatment of infections in swine but also taking into account the human health implications of antimicrobial resistance.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarestrup, FM and Schwarz, S (2006). Staphylococci and streptococci. In: Aarestrup, FM (ed.) Antimicrobial Resistance in Bacteria of Animal Origin. Washington, DC, USA: ASM Press, pp. 187206. (ISBN 1-55581-306-2).Google Scholar
Aarestrup, FM and Kempf, I (2006). Mycoplasma. In: Aarestrup, FM (ed.) Antimicrobial Resistance in Bacteria of Animal Origin. Washington, DC, USA: ASM Press, pp. 239248. (ISBN 1-55581-306-2).Google Scholar
Aarestrup, FM, Seyfarth, AM and Angen, Ø (2004). Antimicrobial susceptibility of Haemophilus parasuis and Histophilus somni from pigs and cattle in Denmark. Veterinary Microbiology 101: 143146.CrossRefGoogle ScholarPubMed
Aarestrup, FM, Wegener, HC and Collignon, P (2008). Resistance in bacteria of the food chain: epidemiology and control strategies. Expert Review of Anti-infective Therapy 6: in press.CrossRefGoogle ScholarPubMed
Boerlin, P, Travis, R, Gyles, CL, Reid-Smith, R, Janecko, N, Lim, H, Nicholson, V, McEwen, SA, Friendship, R and Archambault, M (2005). Antimicrobial resistance and virulence genes of Escherichia coli isolates from swine in Ontario. Applied and Environmental Microbiology 71: 67536761.CrossRefGoogle ScholarPubMed
Burch, DGS, Oliver, Duran C and Aarestrup, FM (2008). Guidelines for antimicrobial use in swine. In: Guardabassi, L, Jensen, LB and Kruse, H (eds) Guide to Antimicrobial Use in Animals. Oxford, UK: Blackwell Publishing Ltd, pp. 102125.CrossRefGoogle Scholar
Chang, CF, Chang, LC, Chang, YF, Chen, M and Chiang, TS (2002a). Antimicrobial susceptibility of Actinobacillus pleuropneumoniae, Escherichia coli and Salmonella choleraesuis recovered from Taiwanese swine. Journal of Veterinary Diagnostic Investigations 14: 153157.CrossRefGoogle ScholarPubMed
Chang, CF, Yeh, TM, Chou, CC, Chang, YF and Chiang, TS (2002b). Antimicrobial susceptibility and plasmid analysis of Actinobacillus pleuropneumoniae isolated in Taiwan. Veterinary Microbiology 84: 169177.CrossRefGoogle ScholarPubMed
de la Fuente, AJ, Tucker, AW, Navas, J, Blanco, M, Morris, SJ and Gutiérrez-Martín, CB (2007). Antimicrobial susceptibility patterns of Haemophilus parasuis from pigs in the United Kingdom and Spain. Veterinary Microbiology 120: 184191.CrossRefGoogle ScholarPubMed
Duhamel, GE, Kinyon, JM, Mathiesen, MR, Murphy, DP and Walter, D (1998). In vitro activity of four antimicrobial agents against North American isolates of porcine Serpulina pilosicoli. Journal of Veterinary Diagnostic Investigations 10: 350356.CrossRefGoogle ScholarPubMed
Duhamel, GE (2008). Swine Dysentery, a re-emerging disease in the US. Proceedings of the 2008 American Association of Swine Veterinarians Conference, San Diego, CA, USA, pp. 499502.Google Scholar
Esaki, H, Morioka, A, Ishihara, K, Kojima, A, Shiroki, S, Tamura, Y and Takahashi, T (2004). Antimicrobial susceptibility of Salmonella isolated from cattle, swine and poultry (2001–2002): Report from the Japanese Veterinary Antimicrobial Resistance Monitoring Program. Journal of Antimicrobial Chemotherapy 53: 266270.CrossRefGoogle ScholarPubMed
Gutiérrez-Martín, CB, del Blanco, NG, Blanco, M, Navas, J and Rodríguez-Ferri, EF (2006). Changes in antimicrobial susceptibility of Actinobacillus pleuropneumoniae isolated from pigs in Spain during the last decade. Veterinary Microbiology 115: 218222.CrossRefGoogle ScholarPubMed
Harada, K, Asai, T, Kojima, A, Oda, C, Ishihara, K and Takahashi, T (2005). Antimicrobial susceptibility of pathogenic Escherichia coli isolated from sick cattle and pigs in Japan. Journal of Veterinary Medical Science 67: 9991003.CrossRefGoogle ScholarPubMed
Hendriksen, RS, Mevius, DJ, Schroeter, A, Teale, C, Jouy, E, Butaye, P, Franco, A, Utinane, A, Amado, A, Moreno, M, Greko, C, Stärk, KD, Berghold, C, Myllyniemi, AL, Hoszowski, A, Sunde, M and Aarestrup, FM (2008). Occurrence of antimicrobial resistance among bacterial pathogens and indicator bacteria in pigs in different European countries from year 2002–2004: the ARBAO-II study. Acta Veterinaria Scandinavia 50: 19.CrossRefGoogle ScholarPubMed
Jensen, VF, Jacobsen, E and Bager, F (2004). Veterinary antimicrobial-usage statistics based on standardized measures of dosage. Preventive Veterinary Medicine 64: 201215.CrossRefGoogle ScholarPubMed
Kadlec, K, Kehrenberg, C, Wallmann, J and Schwarz, S (2004). Antimicrobial susceptibility of Bordetella bronchiseptica isolates from porcine respiratory tract infections. Antimicrobial Agents and Chemotherapy 48: 49034906.CrossRefGoogle ScholarPubMed
Karlsson, M, Oxberry, SL and Hampson, DJ (2002). Antimicrobial susceptibility testing of Australian isolates of Brachyspira hyodysenteriae using a new broth dilution method. Veterinary Microbiology 84: 123133.CrossRefGoogle ScholarPubMed
Kim, B, Min, K, Choi, C, Cho, WS, Cheon, DS, Kwon, D, Kim, J and Chae, C (2001). Antimicrobial susceptibility of Actinobacillus pleuropneumoniae isolated from pigs in Korea using new standardized procedures. Journal of Veterinary Medical Sciences 63: 341342.CrossRefGoogle ScholarPubMed
Lizarazo, YA, Ferri, EF, de la Fuente, AJ and Martín, CB (2006). Evaluation of changes in antimicrobial susceptibility patterns of Pasteurella multocida subsp multocida isolates from pigs in Spain in 1987–1988 and 2003–2004. American Journal of Veterinary Research 67: 663668.CrossRefGoogle ScholarPubMed
Lobová, D, Smola, J and Cizek, A (2004). Decreased susceptibility to tiamulin and valnemulin among Czech isolates of Brachyspira hyodysenteriae. Journal of Medical Microbiology 53: 287291.CrossRefGoogle ScholarPubMed
Madson, D (2008). Trends in diagnostic cases: Keeping our eye on the ball. Proceedings of the 2008 American Association of Swine Veterinarians Conference, San Diego, CA, USA, pp. 409411.Google Scholar
Matter, D, Rossano, A, Limat, S, Vorlet-Fawer, L, Brodard, I and Perreten, V (2007). Antimicrobial resistance profile of Actinobacillus pleuropneumoniae and Actinobacillus porcitonsillarum. Veterinary Microbiology 122: 146156.CrossRefGoogle ScholarPubMed
Post, KW and Songer, JG (2004). Antimicrobial susceptibility of Clostridium difficile isolated from neonatal pigs with enteritis. Anaerobe 10: 4750.CrossRefGoogle ScholarPubMed
Pringle, M, Landén, A and Franklin, A (2006). Tiamulin resistance in porcine Brachyspira pilosicoli isolates. Research in Veterinary Science 80: 14.CrossRefGoogle ScholarPubMed
Rohde, J, Kessler, M, Baums, CG and Amtsberg, G (2004). Comparison of methods for antimicrobial susceptibility testing and MIC values for pleuromutilin drugs for Brachyspira hyodysenteriae isolated in Germany. Veterinary Microbiology 102: 2532.CrossRefGoogle ScholarPubMed
Rood, JI, Maher, EA, Somers, EB, Campos, E and Duncan, CL (1978). Isolation and characterization of multiply antibiotic-resistant Clostridium perfringens strains from porcine feces. Antimicrobial Agents and Chemotherapy 13: 871880.CrossRefGoogle ScholarPubMed
Schröer, U, Kaspar, H and Wallmann, J (2007). Quantitative resistance level (MIC) of Escherichia coli isolated from calves and pigs suffering from enteritis: national resistance monitoring by the BVL. Berliner und Münchinger Tierärztliche Wochenschrift 120: 431441.Google ScholarPubMed
Songer, JG (2004). The emergence of Clostridium difficile as a pathogen of food animals. Animal Health Research Reviews 5: 321326.CrossRefGoogle ScholarPubMed
SVARM (2008). Swedish Veterinary Antimicrobial Resistance Monitoring – 2007. Uppsala, Sweden: The National Veterinary Institute.Google Scholar
Trigo, E, Mendez-Trigo, AV and Simonson, R (1996) Antimicrobial susceptibility profiles of Haemophilus parasuis. A retrospective study from clinical cases submitted during 1994 and 1995 to a veterinary diagnostic laboratory. Proceedings of the 14th International Pig Veterinary Society Congress, Bologna, Italy, p. 313.Google Scholar
Van der Wolf, PJ, Rothkamp, A and Broens, EM (2008) Staphylococci and MRSA isolated from pigs with clinical symptoms. Proceedings of the 20th International Pig Veterinary Society Congress, Durban, S. Africa, vol. 1, p. 166.Google Scholar
van Duijkeren, E, Jansen, MD, Flemming, SC, de Neeling, H, Wagenaar, JA, Schoormans, AH, van Nes, A and Fluit, AC (2007). Methicillin-resistant Staphylococcus aureus in pigs with exudative epidermitis. Emerging Infectious Disease 13: 14081410.CrossRefGoogle ScholarPubMed
Vivash-Jones, B (2000). COMISA Report: The Year in Review. Brussels, Belgium: COMISA.Google Scholar
Wallmann, J (2006). Monitoring of antimicrobial resistance in pathogenic bacteria from livestock animals. International Journal of Medical Microbiology 296 (Suppl. 41): 8186.CrossRefGoogle ScholarPubMed
Wattanaphansak, S, Gebhart, C, Singer, R and Dau, D (2007). In vitro testing of antimicrobial agents for Lawsonia intracellularis. Proceedings of the American Association of Swine Veterinarians, Orlando, Florida, USA, pp. 255256.Google Scholar
World Health Organization (2007). Critically important antimicrobials for human medicine: categorization for the development of risk management strategies to contain antimicrobial resistance due to non-human antimicrobial use. Report of the Second WHO Expert Meeting, Copenhagen, Denmark, 2931 May 2007. [Available online at http://www.who.int/foodborne_disease/resistance/antimicrobials_human.pdf.]Google Scholar
Wulf, M and Voss, A (2008). MRSA in livestock animals-an epidemic waiting to happen? Clinical Microbiology and Infections 14: 519521.CrossRefGoogle ScholarPubMed
Yamamoto, K, Kijima, M, Yoshimura, H and Takahashi, T (2001). Antimicrobial susceptibilities of Erysipelothrix rhusiopathiae isolated from pigs with swine erysipelas in Japan, 1988–1998. Journal of Veterinary Medicine Series B 48: 115126.Google ScholarPubMed
Yoshimura, H, Ishimaru, M, Endoh, YS and Kojima, A (2001). Antimicrobial susceptibility of Pasteurella multocida isolated from cattle and pigs. Journal of Veterinary Medicine Series B 48: 555560.CrossRefGoogle ScholarPubMed
Zhang, C, Ning, Y, Zhang, Z, Song, L, Qiu, H and Gao, H (2008). In vitro antimicrobial susceptibility of Streptococcus suis strains isolated from clinically healthy sows in China. Veterinary Microbiology 131: 386392.CrossRefGoogle ScholarPubMed
Zhao, S, McDermott, PF, White, DG, Qaiyumi, S, Friedman, SL, Abbott, JW, Glenn, A, Ayers, SL, Post, KW, Fales, WH, Wilson, RB, Reggiardo, C and Walker, RD (2007). Characterization of multidrug resistant Salmonella recovered from diseased animals. Veterinary Microbiology 123: 122132.CrossRefGoogle ScholarPubMed