Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T16:06:24.109Z Has data issue: false hasContentIssue false

Phenotypic and genetic parameters for production traits of local chickens in Ghana

Published online by Cambridge University Press:  10 September 2013

R. Osei-Amponsah*
Affiliation:
Department of Animal Science, University of Ghana, PO Box LG 226, Legon, Ghana
B.B. Kayang
Affiliation:
Department of Animal Science, University of Ghana, PO Box LG 226, Legon, Ghana
A. Naazie
Affiliation:
Livestock and Poultry Research Centre (LIPREC), University of Ghana, PO Box LG 38, Legon, Ghana
*
Correspondence to: R. Osei-Amponsah, Department of Animal Science, University of Ghana, PO Box LG 226, Legon, Ghana. email: [email protected]
Get access

Summary

Characterization of indigenous animal genetic resources is a first step in providing much needed information for the conservation and utilization of useful genotypes for future needs. The study was undertaken to estimate heritability of traits of economic importance in local chicken populations from the forest and savannah zones of Ghana. A restricted maximum likelihood animal model was applied to growth data of local chickens from hatch to 40 weeks to estimate heritability, phenotypic and genotypic correlations of body weight and shank length. Heritability, phenotypic and genotypic correlations were also calculated for egg number and egg weight. High genetic and phenotypic correlations were obtained between body weight and shank length. Average heritability estimates were 0.54, 0.42, 0.30 and 0.47 for body weight, shank length, egg number and egg weight, respectively. These moderate-to-high heritability estimates indicate that these traits could be targeted in genetic improvement programmes for local chickens.

Résumé

La caractérisation des ressources zoogénétiques indigènes s'avère un premier pas dans la fourniture de l'information nécessaire à la conservation et utilisation des génotypes utiles aux besoins futurs. Cette étude a été entreprise dans le but d'estimer l'héritabilité de caractères à importance économique chez les populations de poules locales des zones de forêt et de savane du Ghana. Un modèle animal d'estimation du maximum de vraisemblance restreint (REML, de par ses sigles en anglais) a été appliqué aux performances de croissance de poulets locaux, depuis l'éclosion jusqu'aux 40 semaines, pour estimer l'héritabilité et les corrélations phénotypiques et génotypiques du poids corporel et de la longueur des tarses. L'héritabilité et les corrélations phénotypiques et génotypiques ont aussi été calculées pour le nombre d'œufs et le poids de l'œuf. Des corrélations génétiques et phénotypiques élevées ont été obtenues entre le poids corporel et la longueur des tarses. Les estimations moyennes d'héritabilité ont été respectivement de 0,54, 0,42, 0,30 et 0,47 pour le poids corporel, la longueur des tarses, le nombre d'œufs et le poids de l'œuf. Ces estimations d'héritabilité modérées à élevées indiquent que ces caractères pourraient faire l'objet de programmes d'amélioration génétique des poules locales.

Resumen

La caracterización de los recursos zoogenéticos autóctonos es un primer paso en la generación de la información necesaria para la conservación y utilización de los genotipos útiles para las necesidades futuras. Este estudio fue emprendido con el fin de estimar la heredabilidad de los caracteres de importancia económica en las poblaciones de gallinas locales de las zonas de selva y de sabana de Ghana. Se aplicó un modelo animal de máxima verosimilitud restringida (REML, por sus siglas en inglés) a los datos de crecimiento de pollos locales, desde la eclosión hasta las 40 semanas, para estimar la heredabilidad y las correlaciones fenotípicas y genotípicas del peso corporal y la longitud de los tarsos. La heredabilidad y las correlaciones fenotípicas y genotípicas también fueron calculadas para el número de huevos y el peso del huevo. Se obtuvieron unas altas correlaciones genéticas y fenotípicas entre el peso corporal y la longitud de los tarsos. Las estimas medias de heredabilidad fueron, respectivamente, de 0,54, 0,42, 0,30 y 0,47 para el peso corporal, la longitud de los tarsos, el número de huevos y el peso del huevo. Estas estimas de heredabilidad medias a altas sugieren que estos caracteres podrían ser considerados en programas para la mejora genética de las gallinas locales.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adedeji, T.A., Adebambo, A.O., Ozoje, M.O., Ojedapo, L.O. & Ige, A.O. 2006. Preliminary results of short-term egg laying performance of pure and crossbred chicken progeny in a humid environment. J. Anim. Vet. Adv., 5(7): 570573.Google Scholar
Adeleke, M.A., Peters, S.O., Ozoje, M.O., Ikeobi, C.O., Bamgbose, A.M. & Adebambo, O.A. 2011. Genetic parameter estimates of body weight and linear body measurements in pure and crossbred progenies of Nigerian indigenous chickens. Livest. Res. Rural Dev., Article 23 Number 1, Article #19, (available at www.lrrd.org/lrrd23/1/adel23019.htm).Google Scholar
Adeyinka, I.A., Oni, O.O., Nwagu, B.I. & Adeyinka, F.D. 2006. Genetic parameter estimates of body weights of naked neck broiler chickens. Int. J. Poultry Sci., 5(6): 589592.Google Scholar
Argentão, C., Filho, M.T., Marques, J.L.B., Souza, E.M., Eler, J.P. & Ferraz, J.B.S. 2002. Genetic and phenotypic parameters of growth and carcass traits of a male line of broilers raised in tropical conditions. In Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, 19–23 August 2002, Montpellier, France.Google Scholar
Becker, W.A. 1992. Manual of quantitative genetics, 5th edition. Pullman, WA, Academic Enterprises.Google Scholar
Besbes, B. & Gibson, J.P. 1998. Genetic variability of egg production traits in purebred and crossbred laying hens. Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, Armidale, NSW, Australia, vol. 25, p. 459462.Google Scholar
Besbes, B., Ducrocq, V., Foulley, J.L., Protais, M., Tavernier, A. M., Tixier-Boichard, M. & Beaumont, C. 1992. Estimation of genetic parameters of egg production traits of laying hens by restricted maximum likelihood applied to a multiple-trait reduced animal model. Genet. Sel. Evol., 24: 539552.CrossRefGoogle Scholar
Boldman, K.G., Kreise, L.A., Van Vleck, L.D., van Tassel, C.P. & Kachman, S.D. 1995. A Manual for Use of MTDFREML. A Set of Programmes to Obtain Estimates of Variance and Covariances. Washington, DC, Agricultural Research Service.Google Scholar
Dana, N., vander Waaij, E.H. & van Arendonk, J.A.M. 2011. Genetic and phenotypic parameter estimates for body weights and egg production in Horro chicken of Ethiopia. Trop. Anim. Health Prod., 43: 2128.CrossRefGoogle ScholarPubMed
Grosso, J.L.B.M., Balieiro, J.C.C., Eler, J.P., Ferraz, J.B.S., Mattos, E.C. & Filho, T.M. 2010. Comparison of different models to estimate genetic parameters for carcass traits in a commercial broiler line. Genet. Mol. Res., 9(2): 908918.CrossRefGoogle Scholar
Halima, H., Neser, F.W.C., de Kock, A. & van Marle-Koster, E. 2009. Study on the genetic diversity of native chickens in northwest Ethiopia using microsatellite markers. Afr. J. Biotechnol., 8(7): 13471353.Google Scholar
Hidalgo, A.M., Martins, E.N., Leseur dos Santos, A., Oliveira de Quadros, T.C., Ton, A.P.S. & Teixeira, R. 2011. Genetic characterization of egg weight, egg production and age at first egg in quails. Rev. Brasil. Zootec., 40(1): 9599.CrossRefGoogle Scholar
Kabir, M., Oni, O.O., Akpa, G.N. & Adeyinka, I.A. 2006. Heritability estimates and the interrelationships of body weight and shank length in Rhode Island Red and white chickens. Pak. J. Biol. Sci., 9(15): 28922896.CrossRefGoogle Scholar
Kamali, M.A., Ghorbani, S.H., Moradi Sharbabak, M. & Zamiri, M.J. 2007. Heritabilities and genetic correlations of economic traits in Iranian native fowl and estimated genetic trend and inbreeding coefficients. Br. Poultry Sci., 48(4): 443448.CrossRefGoogle ScholarPubMed
Khaldari, M., Pakdel, A., Yegane, H. M., Javaremi, A.N. & Berg, P. 2010. Response to selection and genetic parameters of body and carcass weights in Japanese quail selected for 4-week body weight. Poultry Sci., 89: 18341841.CrossRefGoogle ScholarPubMed
Kiani-Manesh, K.R., Nejati-Javaremi, A. & Saneei, D. 2002. Estimation of (co) variance components of economically important traits in Iranian native fowls. Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, August 19–23. Montpellier, France, Session 4: 0–4Google Scholar
Larivière, J.-M., Michaux, C., Verleyen, V. & Leroy, P. 2009. Heritability estimate and response to selection for body weight in the Ardennaise chicken breed. Int. J. Poult. Sci., 8(10): 952956.CrossRefGoogle Scholar
Melo, J.E., Romano, E., Canet, Z. & Miquel, M.C. 2006. Genetic parameters of growth and feed efficiency in a free range broiler stock. Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, 13–18 August 2006, Belo Horizonte, MG, Brazil, pp. 7–13.Google Scholar
Muchadeyi, F.C., Eding, H., Wollny, C.B.A., Groeneveld, E., Makuza, S.M. & Shamsedin, R. 2007. Absence of population substructuring in Zimbabwe chicken ecotypes inferred using microsatellite analysis. Anim. Genet., 38: 332339.CrossRefGoogle ScholarPubMed
Mwacharo, J.M., Nomura, K., Hanada, H., Jianlin, H., Hannote, O. & Amano, T. 2007. Genetic relationships among Kenyan and other East African indigenous chickens. Anim. Genet., 38(6): 485490.CrossRefGoogle ScholarPubMed
Osei-Amponsah, R., Kayang, B.B., Naazie, A., Osei, Y.D., Youssao, I.A.K., Yapi-Gnaore, V.C., Tixier-Boichard, M. & Rognon, X. 2010. Genetic diversity of forest and Savannah chicken populations of Ghana as estimated by microsatellite markers. Anim. Sci. J., 81: 297303.CrossRefGoogle ScholarPubMed
Osei-Amponsah, R., Kayang, B.B., Naazie, A., Arthur, P.F. & Barchia, M. 2011. Characterisation of local Ghanaian chickens: growth performance evaluation based on Richards growth model and genetic size scaling. Trop. Anim. Health Prod., 43: 11951201.CrossRefGoogle ScholarPubMed
Osei-Amponsah, R., Kayang, B.B. & Naazie, A. 2012. Age, genotype and sex effects on growth performance of local chickens kept under improved management in Ghana. Trop. Anim. Health Prod., 44: 2934.CrossRefGoogle ScholarPubMed
Prado-González, E.A., Ramírez-Avila, L. & Segura-Correa, J.C. 2003. Genetic parameters for body weights of Creole chickens from Southeastern Mexico using an animal model. Livest. Res. Rural Dev., Volume 15 Number 1, (available at www.lrrd.cipav.org.co/lrrd15/1/prad151.htm).Google Scholar
Savegnago, R.P., Buzanskas, M.E., Nunes, B.N., Ramos, S.B., Ledur, M.C., Nones, K. & Munari, D.P. 2011. Heritabilities and genetic correlations for reproductive traits in an F2 reciprocal cross chicken population. Genet. Mol. Res., 10(3): 13371344.CrossRefGoogle Scholar
Segura, J.C., Gavora, J.S., Fairfull, R.W., Gowe, R.S. & Buckland, R.B. 1990. Heritability estimates of male reproductive and morphological traits and their genetic correlations with female egg production and other related traits in chickens. Poultry Sci., 69: 493501.CrossRefGoogle Scholar
Thompson, R. 2008. Estimation of quantitative genetic parameters. Proc. Biol. Sci., 275: 679686.Google ScholarPubMed
Wei, M. & van der Werf, J.H.J. 1995. Genetic correlation and heritabilities for purebred and crossbred performance in poultry egg production traits. J. Anim. Sci., 73: 22202226.CrossRefGoogle ScholarPubMed
Zhang, L.-C., Ning, Z.-H., Xu, G.-Y., Hou, Z.-C. & Yang, N. 2005. Heritabilities and genetic and phenotypic correlations of egg quality traits in brown-egg dwarf layers. Poultry Sci., 84: 12091213.CrossRefGoogle ScholarPubMed