Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T13:38:30.988Z Has data issue: false hasContentIssue false

Genetic variability of the Norwegian Fjord horse in North America

Published online by Cambridge University Press:  19 August 2011

A.S. Bhatnagar
Affiliation:
Department of Animal and Poultry Sciences, Litton-Reaves Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
C.M. East
Affiliation:
Department of Animal and Poultry Sciences, Litton-Reaves Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
R.K. Splan*
Affiliation:
Department of Animal and Poultry Sciences, Litton-Reaves Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
*
Correspondence to: R.K. Splan, 5527 Sullivans Mill Road, Middleburg, VA 20117, USA. email: [email protected]
Get access

Summary

Pedigrees of a reference population of 1 659 North American Norwegian Fjord horses were traced to founders and analysed for coefficients of inbreeding and genetic variability. Effective population size was 207.8 and there were 641 total founders. Pedigree completeness was close to 100 percent for 6 generations, with 9.8 average complete generation equivalents. The average inbreeding coefficient was 3.2 percent for the entire pedigree and 1.6 percent for pedigrees traced back five generations. Average inbreeding coefficients by year of birth increased until 1983, before decreasing and then stabilizing through 2009. Effective number of founders, ancestors and genomes were 96, 30.0 and 12.7, respectively. Low effective number of founders and ancestors indicate that genetic diversity has been lost in the development of the breed in North America. However, registry-enforced breeding strategies have contributed to lower inbreeding coefficients in the current generation.

Résumé

Les arbres généalogiques d'une population de référence constituée de 1 659 chevaux Fjord norvégiens de l'Amérique du Nord ont été déterminés et analysés pour ce qui concerne la consanguinité et la variabilité génétique. La taille réelle de la population est de 207,8 animaux et les fondateurs sont au total 641. La généalogie est résultée exhaustive presque à 100 pour cent pour 6 générations, avec une moyenne de 9,8 équivalents de génération complète. Le coefficient moyen de consanguinité est de 3,2 pour cent pour l'arbre généalogique entier et de 1,6 pour cent pour la généalogie remontant à 5 générations. Les coefficients moyens de consanguinité par année de naissance ont augmenté jusqu'en 1983, avant de diminuer et ensuite de se stabiliser jusqu'à fin 2009. Les nombres réels des fondateurs, des ancêtres et des génomes sont respectivement 96, 30 et 12,7. Le faible nombre réel de fondateurs et d'ancêtres indique une perte de diversité génétique lors de la mise en valeur de la race en Amérique du Nord. Toutefois, les stratégies de sélection imposées par le registre ont contribué à faire baisser les coefficients de consanguinité dans la génération courante.

Resumen

Se han examinado los pedigríes y analizado los coeficientes de consanguinidad y la variabilidad genética de una población de referencia de 1 659 individuos de la raza equina de los Fiordos de Noruega, existentes América del Norte. El tamaño efectivo de la población fue 207,8, con 641 fundadores totales. El pedigrí estaba completo, casi al 100 percent, en las 6 primeras generaciones, con 9,8 equivalentes de la generación media completa. El coeficiente de consanguinidad fue del 3,2 percent para todo el pedigrí y de 1,6 percent teniendo en cuenta sólo las 5 primeras generaciones del pedigrí. Los coeficientes de consanguinidad medios se incrementaron por año de nacimiento hasta 1983, antes de disminuir y luego estabilizarse en 2009. El número efectivo de fundadores, ancestros y genomas fue de 96, 30, y 12,7, respectivamente. El bajo número efectivo de fundadores y ancestros indican que la diversidad genética se ha perdido con el desarrollo de la raza en América del Norte. Sin embargo, los registros obligatorios como parte de las estrategias de mejora han contribuido a reducir los coeficientes de consanguinidad en la generación actual.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Livestock Breeds Conservancy. 2010. About ALBC (available at http://albc-usa.org/about.html, accessed 21 March 2011).Google Scholar
Bjørnstad, G., Gunby, E. & Røed, K.H. 2000. Genetic structure of Norwegian horse breeds. J. Anim. Breed. Genet., 117: 307317.CrossRefGoogle Scholar
Boichard, D. 2002. PEDIG: a Fortran package for pedigree analysis suited to large populations. In Proc. 7th World Congress on Genetics Applied to Livestock Production, pp. 28–13. Montpellier, France, 19–23 August 2002.Google Scholar
Boichard, D., Maignel, L. & Verrier, E. 1997. The value of using probabilities of gene origin to measure genetic variability in a population. Genet. Sel. Evol., 29: 523.CrossRefGoogle Scholar
Bowling, A.T. & Ruvinsky, A. 2000. Genetic aspects of domestication, breeds and their origins. In Bowling, A.T., & Ruvinsky, A., eds. Genetics of the horse, pp. 2552. New York, CABI Publishing.CrossRefGoogle Scholar
Cervantes, I., Molina, A., Goyache, F., Gutiérrez, J.P. & Valera, M. 2008. Population history and genetic variability in the Spanish Arab horse assessed via pedigree analysis. Livest. Sci., 113: 2433.CrossRefGoogle Scholar
Cunningham, E.P., Dooley, J.J., Splan, R.K. & Bradley, D.G. 2001. Microsatellite diversity, pedigree relatedness and the contributions of founder lineages to Thoroughbred horses. Anim. Genet., 32: 360364.CrossRefGoogle ScholarPubMed
Druml, T., Baumung, R. & Sölkner, J. 2009. Pedigree analysis in the Austrian Noriker draught horse: genetic diversity and the impact of breeding for coat colour on population structure. J. Anim. Breed. Genet., 126: 348356.CrossRefGoogle ScholarPubMed
Ducro, B.J., Bovenhuis, H., Neuteboom, M. & Hellinga, I. 2006. Genetic diversity in the Dutch Friesian horse. In Proc. 8th World Congress on Genetics Applied to Livestock Production. Belo Horizonte, Brazil, 13–18 August 2006.Google Scholar
Falconer, D.S. & Mackay, T.F.C. 1996. Introduction to quantitative genetics. London, Longman.Google Scholar
Głażewska, I. & Jezierski, T. 2004. Pedigree analysis of Polish Arabian horses based on founder contributions. Livest. Prod. Sci., 90: 293298.CrossRefGoogle Scholar
Hamann, H. & Distl, O. 2008. Genetic variability in Hanoverian warmblood horses using pedigree analysis. J. Anim. Sci., 86: 15031513.CrossRefGoogle ScholarPubMed
Lacy, R.C. 1989. Analysis of founder representation in pedigrees: founder equivalents and founder genome equivalents. Zoo Biol., 8: 111123.CrossRefGoogle Scholar
MacCluer, J.W., Boyce, A.J., Dyke, B., Weitkamp, L.R., Pfenning, D.W. & Parsons, C.J. 1983. Inbreeding and pedigree structure in Standardbred horses. J. Hered., 74: 394399.CrossRefGoogle Scholar
Mahon, G.A.T. & Cunningham, E.P. 1982. Inbreeding and the inheritance of fertility in the Thoroughbred mare. Livest. Prod. Sci., 9: 743754.CrossRefGoogle Scholar
Moureaux, S., Verrier, E., Ricard, A. & Meriaux, J. 1996. Genetic variability within French race and riding horse breeds from genealogical data and blood marker polymorphisms. Genet. Sel. Evol., 28: 83102.CrossRefGoogle Scholar
Norwegian Fjord Horse Registry. 2010. NFHR rules and regulations (available at www.nfhr.com/catalog/index.php?rules=1, accessed 15 October 2010).Google Scholar
Poncet, P.A., Pfister, W., Muntwyler, J., Glowatzki-Mullis, M.L. & Gaillard, C. 2006. Analysis of pedigree and conformation data to explain genetic variability of the horse breed Franches-Montagnes. J. Anim. Breed. Genet., 123: 114121.CrossRefGoogle ScholarPubMed
Prichard, P. 2010. The history of the Norwegian Fjord horse registry (available at www.nfhr.com/catalog/index.php?about=1, accessed 15 October 2010).Google Scholar
Royo, L.J., Álvarez, I., Gutiérrez, J.P., Fernández, I. & Goyache, F. 2007. Genetic variability in the endangered Asturcón pony assessed using genealogical and molecular information. Livest. Sci., 107: 162169.CrossRefGoogle Scholar
Sevinga, M., Vrijenhoek, T., Hesselink, J.W., Barkema, H.W. & Groen, A. F. 2004. Effect of inbreeding on the incidence of retained placenta in Friesian horses. J. Anim. Sci., 82: 982986.CrossRefGoogle ScholarPubMed
Valera, M., Molina, A., Gutiérrez, J.P., Gómez, J. & Goyache, F. 2005. Pedigree analysis in the Andalusian horse: population structure, genetic variability and influence of the Carthusian strain. Livest. Prod. Sci., 95: 5766.CrossRefGoogle Scholar
Van Raden, P.M. 1992. Accounting for inbreeding and crossbreeding in genetic evaluation of large populations. J. Dairy Sci., 75: 31363144.CrossRefGoogle Scholar
Zechner, P., Sölkner, J., Bodo, I., Druml, T., Baumung, R., Achmann, R., Marti, E., Habe, F. & Brem, G. 2002. Analysis of diversity and population structure in the Lipizzan horse breed based on pedigree information. Livest. Prod. Sci., 77: 137146.CrossRefGoogle Scholar