Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T03:20:08.016Z Has data issue: false hasContentIssue false

Chemical composition of colostrum from Azawak cow in Niger compared with meta-analytical data

Published online by Cambridge University Press:  09 June 2014

H. Abdou*
Affiliation:
Faculty of Agriculture, University Abdou Moumouni of Niamey, Niamey, Niger
H. Marichatou
Affiliation:
Faculty of Agriculture, University Abdou Moumouni of Niamey, Niamey, Niger
J-F. Beckers
Affiliation:
Faculty of Veterinary, University of Liege, Liege, Belgium
I. Dufrasne
Affiliation:
Faculty of Veterinary, University of Liege, Liege, Belgium
J-L. Hornick
Affiliation:
Faculty of Veterinary, University of Liege, Liege, Belgium
*
Correspondence to: H. Abdou, Faculty of Agriculture, University Abdou Moumouni of Niamey, Niamey, Niger. email: [email protected]
Get access

Summary

This study aimed at comparing data obtained from Azawak zebu colostrum with literature data. The comparison was performed by a meta-analytical approach. Colostrum samples were hand-collected after 5 h from seven Azawak cows at calving between August 27 and September 10, 2009 in the Sahel. For data from literature, 21 references were identified in the following analytical databases: PubMed, Science Direct, Google scholar, Collection from University of Liege. The references were selected according to the following two criteria: (i) only studies reported on bovine colostrum were used irrespective of breeds, and (ii) among the selected studies, those not providing complete information to allow meta-analytical calculation were excluded. Samples were analysed for immunoglobulins (IgG, IgM and IgA), lactoferrin and chemical composition (dry mater, protein, fat, lactose, ash, Ca, P, NA, K and Mg). The mean levels of IgG, IgM, dry matter, protein and fat for Azawak cows were lower (P < 0.001) than those obtained in other breeds; however, colostrum from the Azawak was higher in IgA but the difference was not significant. For lactose and ash, mean values for Azawak cows were higher (P < 0.001) than those from the literature. Contents of Ca, P, Na and Mg in Azawak bovine colostrum were significantly higher (P < 0.001) than the mean levels in form the literature data. In conclusion, the colostrum from Azawak cows appears to be lower in most immunoglobulins, in fat and in protein than the values reported in the literature, but higher in lactose and minerals. This could be an adaptation to Sahelian constraints.

Résumé

Ce travail vise à comparer les données obtenues avec le colostrum du zébu Azawak à celles obtenues dans la littérature aux fins d'une utilisation hétérologue chez les petits ruminants, et ceci en utilisant une approche méta-analytique. Des échantillons de colostrum ont été récoltés par traite manuelle au cours des vêlages entre le 27 août et le 10 septembre 2009 dans le Sahel, à partir de 7 zébus Azawak. Pour les données de la littérature, vingt et un (21) des références ont été identifiées dans les bases de données analytiques (PubMed, Science Direct, Google Scholar, Collection de l'Université de Liège). Les références ont été sélectionnées selon les deux critères suivants: (i) les études rapportées sur le colostrum bovin ont été utilisées sans distinction de races, et (II) parmi les études sélectionnées celles ne comportant pas des informations complètes pour permettre le calcul méta-analyse ont été exclues. Les échantillons ont été analysés pour immunoglobulines (IgG, IgM, IgA), lactoferrine, et la composition chimique (matière sèche, protéines, lipide, lactose, cendre brute, calcium, phosphore, sodium, potassium, magnésium). Les concentrations moyennes d'IgG, d’IgM de matière sèche, de protéines et matières grasses pour le zébu Azawak présentaient des valeurs plus faibles (P < 0.001) que celles obtenues chez d'autres races, mais elles ont des niveaux plus élevés en IgA (P > 0.05), lactose et cendre brut (P < 0,001). Les teneurs en minéraux solubles (Ca, P, K, Na et Mg) du colostrum du zébu Azawak étaient significativement plus élevées (P < 0.001) que les niveaux moyens des données de la littérature recueillies. En conclusion, comparé aux données de littérature, le colostrum de vache Azawak semble être plus pauvre en immunoglobuline, en lipides et en protéines, mais plus riche en lactose et en minéraux. Il se pourrait qu’il s’agisse d’une adaptation de la race au milieu sahélien.

Resumen

Este estudio tiene como objetivo comparar los datos obtenidos a partir de cebú Azawak calostro con datos de la literatura, para uso heterólogo en pequeños rumiantes. La comparación se realiza, utilizando un enfoque meta-analítico. Muestras de calostro fueron recogidos a mano durante el parto entre agosto 27 y septiembre, el 10 de 2009 en el Sahel, de 7 Azawak vacas. Para los datos de la literatura, veintiuno (21) referencias se identificaron en las siguientes bases de datos analíticos: PubMed, Science Direct, Google scholar, Colección de la Universidad de Lieja. Las referencias han sido seleccionados de acuerdo con los dos criterios siguientes: (i) sólo estudios informaron sobre el calostro bovino se utilizaron independientemente de razas, y (ii) entre los estudios seleccionados los que no proporcionan información completa para permitir el cálculo meta-analítica fueron excluidos. Las muestras se ensayaron para inmunoglobulinas (IgG, IgM, IgA), lactoferrina, y la composición química (materia seca, proteína, lípido, lactosa, ceniza bruta, calcio, fósforo, sodio, potasio, magnesio). Los niveles medios de IgG, IgM, materia seca, proteína y grasa de vaca Azawak fueron menores (P < 0.001) que los obtenidos en otras razas, pero fue mayor para IgA (P > 0.05). En el caso de la lactosa y cenizas, los valores medios de las vacas Azawak fueron más altos (P < 0.001) que los de la literatura. Contenido de Ca, P, Na y Mg en Azawak calostro bovino fueron significativamente mayores (P < 0.001) que los niveles medios en datos de la literatura.. El calostro de Azawak se aparece contenir menos immunoglobulin, gasa y proteína que los datos de la literatura, pero mas lactose y cenizas. A lo mejor, se podría estar un adaptacio al medio Sahelian.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Fattah, A.M., Abd-Rabo, F.H.R., El-Dieb, S.M. & El-Kashef, H.A. 2012. Changes in composition of colostrum of Egyptian buffaloes and Holstein cows. Veterinary Research 8: 19.Google Scholar
Abdou, H., Marichatou, H., Beckers, J-F., Dufrasne, I. & Hornick, J-L. 2012. Physiologie de la production et composition chimique du colostrum des grands mammifères domestiques: généralités. Annales Médecine Vétérinaire 156: 8798.Google Scholar
Andrew, S.M. 2001. Effect of composition of colostrum and transition milk from holstein heifers on specificity rates of antibiotic residue tests. Journal of Dairy Science, 84: 100106.Google Scholar
AOAC, 2006. Association of official analytical chemists, official methods of analysis, K-INTDF , 18th edition, VA, USA, Arlington. 28 pp.Google Scholar
Beighle, D.E. 1999. The effect of gestation and lactation on bone calcium, phosphorus and magnesium in dairy cows. Journal of the South African Veterinary Association, 70: 142146.Google Scholar
Berge, A.C.B., Besser, T.E., Moore, D.A. & Sischo, W.M. 2009. Evaluation of the effects of oral colostrum supplementation during the first fourteen days on the health and performance of preweaned calves. Journal of Dairy Science, 92: 286295.Google Scholar
Brandon, M.R. & Lascelles, A.K. 1975. The effect of pre-partum milking on the transfer of immunoglobulin into mammary glands of cows. Australian Journal of Experimental Biology and Medical Science, 53: 197204.Google Scholar
Chaibou, M. 2005. Productivité zootechnique du désert: le cas du bassin laitier d'Agadez au Niger (Thèse de Doctorat ès sciences). Montpellier, France, Université de Montpellier II. 379pp.Google Scholar
Collier, R.J., Miller, M.A., Hildebrandt, J.R., Torkelsson, A., White, T.C., Madsen, K.S., Vicini, J.L., Eppard, P.J. & Lanza, G.M. 1991. Factors affecting insulin-like growth factor-2 concentration in bovine colostrum. Journal of Dairy Science 74: 29052911.CrossRefGoogle Scholar
Cucherat, M., Haugh, M.C., Gooch, M. & Boissel, J.P. 2000. Evidence of clinical efficacy of homeopathy. A meta-analysis of clinical trials. HMRAG. Homeopathic medicines research advisory group. European Journal of Clinical. Pharmacology, 56: 2733.Google Scholar
Delouis, C. 1978. Physiology of colostrum production. Annales de. Recherches Vétérinaire, 9: 193203.Google Scholar
Derivaux, J., Ectors, F. & Beckers, J.F. 1976. Données récentes en gynécologie animale. Annales Médecine Vétérinaire, 120: 81102.Google Scholar
Elfstrand, L., Lindmark-Manssom, H., Paulssona, M., Nybergc, L. & Akesson, B. 2002. Immunoglobulin's growth factors and growth hormone in bovine colostrum and the effects of processing. International Dairy Journal, 12: 879887.Google Scholar
Ferdowsi Nia, E., Nikkhah, A., Rahmani, H.R., Alikhani, M., Mohammad Alipour, M. & Ghorbani, G.R. 2010. Increased colostral somatic cell counts reduce pre-weaning calf immunity, health and growth. Journal of Animal Physiology and Animal Nutrition, 94: 628634.Google Scholar
Georgiev, I.P. 2005. Alterations in chemical composition of colostrum in relationship to post-partum time. Bulgarian Journal of Veterinary Medicine, 8: 3539.Google Scholar
Godden, M., Haine, D.M., Konkol, K. & Peterson, J. 2009. Improving passive transfer of immunoglobulin in calves. II: Interaction between feeding method and volume of colostrum fed. Journal of Dairy Science, 92: 17581764.Google Scholar
Gouro, S.A. & Yenikoye, A. 1991. Etude préliminaire sur le comportement d'œstrus et la progestéronémie de la femelle zébu (Bos indicus) Azawak au Niger. Revue d'Elevage et de Médecine Vétérinaire des Pays Tropicaux, 1: 100103.Google Scholar
Hadjipanayiotou, A.M. 1995. Composition of ewe, goat and cow milk and colostrum of ewe and goat. Small Ruminant Research, 18: 255262.Google Scholar
Hawken, P.A.R., Williman, M., Milton, J., Kelly, R., Nawak, R. & Blachea, D. 2012. Nutritional supplementation during the last week of gestation increased the volume and reduced the viscosity of colostrum produced by twin bearing ewes selected for nervous temperament. Small Ruminant Research, 105: 308314.CrossRefGoogle Scholar
Joshi, N.R., Mclaughline, A., & Phillips, R.W. 1957. Les bovins d’Afrique, types et races. Rome, Italie, FAO. 317 pp.Google Scholar
Kaewlamun, W., Okouyi, M., Humblotd, P., Remy, D., Techakumphu, M., Duvaux-Ponter, C. & Pontera, A.A. 2011. The influence of a supplement of β-carotene given during the dry period to dairy cows on colostrum quality, and β-carotene status, metabolites and hormones in newborn calves. Animal Feed Science and Technology, 165: 3137.Google Scholar
Klimes, J., Jagos, P., Bouda, J. & Gajdusek, S. 1986. Basic quantitative parameters of cows colostrum and their dependence on season and post partum. Acta Veterinaria Brno, 55: 2339.Google Scholar
Klobasa, F., Goel, M.C. & Werhahn, E. 1998. Comparison of freezing and lyophilizing for preservation of colostrum as a source of immunoglobulins for calves. Journal Animal Science, 76: 923926.Google Scholar
Kume, S., Yamamoto, E., Kudo, T., Toharmat, T. & Nonaka, I. 1998. Effect of parity on mineral concentration in milk and plasma of holstein cows during early lactation. Association Juris Affaires Santé, 11: 133138.Google Scholar
Kuralkar, P. & Kuralkar, S.V. 2010. Nutritional and immunological Importance of colostrum for the new born. Veterinary World, 3: 4647.Google Scholar
Levieux, D., Masle, L., Geneix, N. & Bowier, F. 2001. Composition du colostrum et du lait de chèvre au cours de la période colostrale en immunogtobuline G, -lactoglobulinea, -lactalbumine et sérum albumine. Renc. Rech. Ruminants, 8: 91.Google Scholar
Machado-Neto, R., Grigolo, I.H., Moretti, D.B., Kindlein, L. & Pauletti, P. 2011. Intestinal histology of Santa Ines lambs fed bovine or ovine colostrum. Czech Journal of Animal Science , 56: 465474.Google Scholar
Maunsell, F.P., Morin, D.E., Constable, P.D., Hurley, W.L., McCoy, G.C., Kakoma, I. & Isaacson, R.E. 1998. Effects of mastitis on the volume and composition of colostrum produced by holstein cows. Journal Dairy Science, 81: 12911299.Google Scholar
Morrill, K.M., Conrad, E., Lago, A., Campbell, J., Quigley, J. & Tyler, H. 2012. Nationwide evaluation of quality and composition of colostrum on dairy farms in the United States. Journal Dairy Science , 95: 39974005.CrossRefGoogle ScholarPubMed
Nardone, A., Lacetera, N., Bernabucci, U. & Ronchi, B. 1997. Composition of colostrum from dairy heifers exposed to high air temperatures during late pregnancy and the early postpartum period1. Journal of Dairy Science, 80: 838844.CrossRefGoogle Scholar
Ontsouka, C.E., Bruckmaier, R.M. & Blum, J.W. 2003. Fractionized milk composition during removal of colostrum and mature milk. Journal of Dairy Science, 86: 20052011.Google Scholar
Oumarou, A. 2004. Production laitière et croissance du zébu Azawak en milieu réel: suivi et évaluation technique à mis parcours du projet d’appui à l’élevage des bovins de races Azawak en zone agropastorale au Niger (Thèse de doctorat vétérinaire). École Inter-États de sciences et médecine vétérinaire de Dakar: Dakar, 82pp.Google Scholar
Parrish, D.B., Wise, G.H., Hughes, J.S. & Atkeson, F.W. 1950. Properties of the colostrums of the dairy cow. V yield, specific gravity and concentrations of total solids and its various components of colostrums and milk. Journal of Dairy Science, 33: 457465.Google Scholar
Quigley, J.D. & Martin, K.R. 1994. Immunoglobulin concentration, specific gravity, and nitrogen fractions of colostrum from jersey cattle. Journal of Dairy Science, 77: 264269.Google Scholar
Quigley, J.D., Martin, K.R. & Dowlen, H.H. 1995. Concentrations of trypsin inhibitor and immunoglobulins in colostrum of jersey cows. Journal of Dairy Science, 78: 15731577.Google Scholar
Rastani, R.R., Grummer, R.R., Bertics, S.J., Gumen, A., Wiltbank, M.C., Mashek, D.G. & Schwab, M.C. 2005. Reducing dry period length to simplify feeding transition cows: milk production, energy balance, and metabolic profiles. Journal of Dairy Science, 88: 10041014.Google Scholar
Remond, B. & Bonnefoy, J.C. 1997. Performance of a herd of Holstein cows managed without the dry period. Annales de Zootechnie, 46: 312.Google Scholar
Sacerdote, P., Mussano, F., Franchi, S., Panerai, A.E., Bussolati, G., Carossa, S., Bartorelli, A. & Bussolati, B. 2013. Biological components in a standardized derivative of bovine colostrum. Journal of Dairy Science, 96: 17451754.CrossRefGoogle Scholar
Serieys, F. 1993. Le colostrum de vache. Ploufragan, Smithkline-Beekham. 88 pp.Google Scholar
Seydou, B. 1981. Contribution à l’étude de la production laitière du zébu Azawak au Niger (Thèse de doctorat vétérinaire). École Inter-Étass de sciences et médecine vétérinaire de Dakar: Dakar, 102p.Google Scholar
Sheldrake, R.F., Husband, A.J., Watson, D.L. & Cripps, A.W. 1984. Selective transport of serum-derived IgA into mucosal secretions. Journal of Immunology, 132: 363368.Google Scholar
Stott, G.H., Fleenor, W.A. & Kleese, W.C. 1981. Colostral immunoglobulin concentration in two fractions of first milking postpartum and five additional milking. Journal of Dairy Science, 64: 459465.Google Scholar
Strekozov, N.I., Motova, E.N. & Fedorov, Y.N. 2008. Evaluation of the chemical composition and immunological properties of colostrum of cows’ first milk yield. Russian Agricultural Science, 34: 259260.Google Scholar
Tsloulpas, A., Grandison, A.S. & Lewis, M.J. 2007. Changes in physical properties of bovine milk from the colostrum period to early lactation. Journal of Dairy Science, 90: 50125017.Google Scholar
Tucker, H.A. 2000. Hormones, mammary growth, and lactation: a 41-year perspective. Journal of Dairy Science, 83: 874884.CrossRefGoogle ScholarPubMed
West, J.W. 2003. Effects of heat-stress on production in dairy cattle. Journal of Dairy Science, 86: 2131–44.Google Scholar
Westra, I.G.K.P. & Wahyudi, I. 2009. The effects of tropical climate stressor on gamma immunoglobulin concentration. Animal Production, 11: 143148.Google Scholar
Wolfensohn, D., Flamenbaum, I. & Berman, A. 1988. Dry period heat stress relief effects on prepartum progesterone, calf birth weight, and milk production. Journal of Dairy Science, 71: 809818.Google Scholar
Zagorska, J., Indra Eihvalde, I., Gramatina, I. & Sarvi, S. 2011. Evaluation of colostrums quality and new possibilities for its application. In 6th Baltic Conference on Food Science and Technology. Latvijas Lauksaimniecības Universitātes Pārtikas Tehnonoloģ;ijas fakultātes un rakstu autoru īpašums un tā saturs nav, pp. 45–49.Google Scholar
Zarcula, S., Cernescu, H., Mircu, C., Tulcan, C., Morvay, A., Simona Baul, S. & Daniel, P. 2010. Influence of breed, parity and food intake on chemical composition of first colostrum in cow. Animal Science Biotechnology, 43: 154157.Google Scholar