Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T05:08:38.946Z Has data issue: false hasContentIssue false

Breeding structure and genetic variability of the Holstein Friesian dairy cattle population in Kenya

Published online by Cambridge University Press:  08 April 2013

T.K. Muasya*
Affiliation:
Department of Crops and Livestock Sciences, Humboldt University-Berlin, Philipp Straße 13, Haus 9, D-10115, Germany Kenya Agricultural Research Institute, PO Box 25, 20117, Naivasha, Kenya
K.J. Peters
Affiliation:
Department of Crops and Livestock Sciences, Humboldt University-Berlin, Philipp Straße 13, Haus 9, D-10115, Germany
A.K. Kahi
Affiliation:
Animal Breeding and Genomics Group, Department of Animal Sciences, Egerton University, PO Box 536, 20115 Egerton, Kenya
*
Correspondence to: Thomas Muasya, Department of Crops and Livestock Sciences, Humboldt University-Berlin, Philipp Straße 13, Haus 9, D-10115, Germany. email: [email protected]
Get access

Summary

Pedigree data from 11 267 animals born between 1960 and 2004 were used to analyse population structure and genetic variability of the Holstein–Friesian population in Kenya. Parameters estimated were the pedigree completeness index, average inbreeding coefficient, number of founders, effective number of founders and ancestors, and genetically important herds. The hierarchy of registered herds and concentration of origin of individuals was also assessed. Pedigree completeness of the reference population was 67.1 percent. Average inbreeding level for the entire population was 0.09 and 1.7 percent among individuals with three complete generations, and 9.2 percent among inbred individuals. Inbreeding level increased with generation from 0.8 to 2.5 percent in the most recent generation among individuals with three complete generations. Effective number of founders and ancestors were 156 and 108, respectively. The ten ancestors with the largest marginal genetic contribution accounted for 19.52 percent of the total variation. The effective number of genetically important herds that contributed breeding males to the population was 5.2. Higher levels of inbreeding were detected among individuals with at least three complete generations. Few herds contributed breeding males, causing structural weakness to the breeding programme. Recruitment of herds into the breeding tier is needed to strengthen the breeding structure and pedigree recording enhanced to enable long-term management of genetic variability.

Résumé

Les données généalogiques de 11267 animaux nés entre 1960 et 2004 ont été utilisées pour analyser la structure et la variabilité génétique de la population Holstein-Frisonne au Kenya. Les paramètres estimés ont été l'indice de complétude de la généalogie, le coefficient moyen de consanguinité, le nombre de fondateurs et le nombre effectif de fondateurs, d'ancêtres et de troupeaux génétiquement importants. La hiérarchie des troupeaux inscrits et la concentration de l'origine des individus ont aussi été évaluées. Le degré de complétude de la généalogie pour la population de référence a été du 67,1%. Le niveau moyen de consanguinité a été de 0,09% pour la population entière, de 1,7% pour les individus ayant trois générations complètes et de 9,2% pour les individus consanguins. Le niveau de consanguinité a augmenté d'une génération à l'autre, passant de 0,8 à 2,5% pour la génération la plus récente des individus ayant trois générations complètes. Le nombre effectif de fondateurs et d'ancêtres a été de 156 et 108, respectivement. Les dix ancêtres avec la plus grande contribution génétique marginale ont expliqué le 19,52% de la variation totale. Le nombre effectif de troupeaux génétiquement importants ayant apporté des mâles reproducteurs à la population a été de 5,2. Les niveaux les plus élevés de consanguinité ont été décelés parmi les individus ayant au moins trois générations complètes. Peu de troupeaux ont apporté des mâles reproducteurs, ce qui affaiblit la structure du programme de sélection. Le recrutement de troupeaux aux différents étages du programme de sélection s'avère nécessaire pour renforcer la structure du programme et pour améliorer l'enregistrement des généalogies afin de permettre la gestion à long terme de la variabilité génétique.

Resumen

Los datos genealógicos de 11267 animales nacidos entre 1960 y 2004 fueron usados para analizar la estructura y la variabilidad genética de la población de ganado Holstein-Frisón en Kenia. Los parámetros estimados fueron el índice de compleción del pedigrí, el coeficiente medio de endogamia, el número de fundadores y el número efectivo de fundadores, de ancestros y de rebaños genéticamente importantes. También se evaluaron la jerarquía de los rebaños registrados y la concentración del origen de los individuos. El grado de compleción del pedigrí para la población de referencia fue del 67,1%. El nivel medio de endogamia fue del 0,09% para la población entera, de 1,7% para individuos con tres generaciones completas y de 9,2% para individuos endogámicos. El nivel de endogamia aumentó de una generación a otra pasando de 0,8% a 2,5% en la generación más reciente de individuos con tres generaciones completas. El número efectivo de fundadores y de ancestros fue de 156 y 108, respectivamente. Los diez ancestros con la mayor contribución genética marginal explicaron el 19,52% de la variación total. El número efectivo de rebaños genéticamente importantes que aportaron machos reproductores a la población fue de 5,2. Los mayores niveles de endogamia se detectaron entre los individuos con al menos tres generaciones completas. Fueron pocos los rebaños que aportaron machos reproductores, lo cual debilita la estructura del programa de mejora genética. La incorporación de rebaños a los distintos niveles del programa de cría se hace necesaria para fortalecer la estructura del programa y para mejorar el registro genealógico con el fin de posibilitar la gestión a largo plazo de la variabilidad genética.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, J.S.F. 1957. The breed structure and genetic analysis of the pedigree cattle breeds in Australia: I. The Jersey. Australian Journal of Agricultural Resources, 8: 561586.Google Scholar
Bijma, P. & Woolliams, J.A. 1999. Prediction of genetic contribution and generation intervals in populations with overlapping generations under selection. Genetics 151: 11971210.CrossRefGoogle ScholarPubMed
Boichard, D. 2002. PEDIG: a Fortran package for pedigree analysis suited for large populations. In Proceedings of the Seventh World Congress on Genetics Applied to Livestock Production, Montpellier, France. CD-ROM Communication No. 28-13.Google Scholar
Boichard, D., Maignel, L. & Verrier, E. 1997. The value of using probabilities of gene origin to measure genetic variability in a population. Genetics, Selection, Evolution, 29: 523.Google Scholar
Falconer, D.S. & Mackay, T.F.C. 1996. Introduction to Quantitative Genetics. 4th edition. Harlow, UK, Longman Scientific and Technical.Google Scholar
Faria, F.J.C., Fihlo, A.E.V., Madalena, F.E. & Josahkian, L.A. 2009. Pedigree analysis in the Brazilian Zebu breeds. Journal of Animal Breeding and Genetics, 126: 148153.CrossRefGoogle ScholarPubMed
FAO. 1998. Secondary Guidelines for Development of National Farm Animal Genetic Resources Management Plans: Animal Recording for Medium Input Production Environment. Food and Agriculture Organization of the United Nations (FAO), Rome (available at http://dad.fao.org/cgi-bin/getblob.cgi?sid=-1,50006090).Google Scholar
Franklin, I.R. & Frankham, R. 1998. How large must populations be to retain evolutionary potential? Animal Conservation, 1: 6970.CrossRefGoogle Scholar
Gama, L.T. & Delgado, J.V. 2000. Assessing the risk status of a breed. In Proceedings of the 5th World Conference on Conservation of Animal Genetic Resources, Brasilia (Brazil), 20–25 November 2000. CDD 591.15 Copyright EMBRAPA, Brasilia, Brasil, 1920.Google Scholar
Goyache, F., Gutierrez, J.P., Fernandez, I., Gomez, E., Alvarez, I., Dıaz, J. & Royo, L.J. 2003. Using pedigree information to monitor genetic variability of endangered populations: the Xalda sheep breed of Asturias as an example. Journal of Animal Breeding and Genetics, 120: 95105.CrossRefGoogle Scholar
Gutierrez, J.P. & Goyache, F. 2005. ENDOG v4.8. A note on ENDOG: a computer programme for analysing pedigree information. Journal of Animal Breeding and Genetics, 122: 172176.Google Scholar
Gutierrez, J.P., Altarriba, J., Dıaz, C., Quintanilla, R., Canon, J. & Piedrafita, J. 2003. Genetic analysis of eight Spanish beef cattle breeds. Genetics Selection Evolution, 35: 121.Google Scholar
Hagger, C. 2005. Estimates of genetic diversity in the brown cattle population of Switzerland obtained from pedigree information. Journal of Animal Breeding and Genetics, 122: 405413.Google Scholar
Hammami, H., Croquet, C., Stoll, J., Rekik, B. & Gengler, N. 2007. Genetic diversity and joint-pedigree analysis of two importing Holstein populations. Journal of Dairy Science, 90: 35303541.Google Scholar
Hammami, H., Rekik, B., Bastin, C., Soyeurt, H., Bormann, J., Stoll, J. & Gengler, N. 2009. Environmental sensitivity for milk yield in Luxembourg and Tunisian Holsteins by herd management level. Journal of Dairy Science, 92: 46044612.CrossRefGoogle ScholarPubMed
Ilatsia, E.D., Migose, S.A., Magothe, T.M., Muasya, T.K. & Kahi, A.K. 2007. Genetic parameters and annual trends for 305-Day milk yield of Bos taurus dairy cattle breeds in Kenya. International Journal of Cow Science, 3: 2023.Google Scholar
Kahi, A.K., Nitter, G. & Gall, C.F. 2004. Developing breeding schemes for pasture based dairy production systems in Kenya. II. Evaluation of alternative objectives and schemes using a two-tier open nucleus and young bull system. Livestock Production Science, 88: 179192.Google Scholar
Kearney, J.F., Wall, E., Villanueva, B. & Coffey, M.P. 2004. Inbreeding trends and application of optimized selection in the UK Holstein population. Journal of Dairy Science, 87: 35033509.Google Scholar
Koenig, S. & Simianer, H. 2006. Approaches to the management of inbreeding and relationship in the German Holstein dairy cattle population. Livestock Science, 103: 4053.CrossRefGoogle Scholar
Lacy, R.C. 1989. Analysis of founder representations in pedigrees: founder equivalents and founder genome equivalents. Zoo Biolology, 8: 111123.Google Scholar
MacCluer, J.W., Boyce, A.J., Dike, B., Weitkamp, L.R., Pfenning, D.W. & Parsons, C.J. 1983. Inbreeding and pedigree structure in standard bred horses. Journal of Heredity, 74: 394399.Google Scholar
McParland, S., Kearney, J.F., Rath, M. & Berry, D.P. 2007. Inbreeding trends and pedigree analysis of Irish dairy and beef cattle populations. Journal of Animal Science, 85: 322331.Google Scholar
Meuwissen, T.H.E. 1991. Expectation and variance of genetic gain in open and closed nucleus and progeny testing schemes. Animal Production, 53: 133141.Google Scholar
Murage, A.W. & Ilatsia, E.D. 2008. Factors that determine use of breeding services by smallholder dairy farmers in Central Kenya. Tropical Animal Health and Production, 43: 199207.CrossRefGoogle Scholar
Ojango, J.M.K. & Pollot, G.E. 2002. The relationship between Holstein bull breeding values for milk yield derived from both the UK and Kenya. Livestock Production Science, 74: 112.Google Scholar
Ojango, J.M.K., Ducrocq, V. & Pollot, G.E. 2005. Survival analysis of factors affecting culling early in the productive life of Holstein–Friesian cattle in Kenya. Livestock Production Science, 92: 317322.Google Scholar
Ombura, J., Wakhungu, J.W., Mosi, R.O. & Amimo, J.O. 2007. An assessment of the efficiency of the dairy bull dam selection methodology in Kenya. Livestock Research for Rural Development, 19, Article #10 (available at http://www.lrrd.org/lrrd19/1/ombu19010.htm, retrieved 9 August 2011).Google Scholar
Pedersen, J., Langdahl, C., Pöso, J. & Johansson, K. 2001. A joint Nordic animal model for milk production traits in Holsteins and Ayrshires. Interbull Bulletin, 27: 38.Google Scholar
Rekaya, R., Weigel, K.A. & Gianola, D. 2003. Bayesian estimation of parameters of a structural model for genetic covariances between milk yield in five regions of the United States. Journal of Dairy Science, 86: 18371844.Google Scholar
Robertson, A. 1953. A numerical description of breed structure. Journal of Agricultural Science, 43: 334336.Google Scholar
Roughsedge, T., Brotherstone, S. & Visscher, P.M. 1999. Quantifying genetic contributions to a dairy cattle population using pedigree analysis. Livestock Production Science, 60: 359369.Google Scholar
Sölkner, J., Filipcic, L. & Hampshire, N. 1998. Genetic variability of populations and similarity of subpopulations in Austrian cattle breeds determined by analysis of pedigrees. Journal of Animal Science, 67: 249256.CrossRefGoogle Scholar
Sørensen, A.C., Sørensen, M.K. & Berg, P. 2005. Inbreeding in Danish dairy cattle breeds. Journal of Dairy Science, 88: 18651872.CrossRefGoogle ScholarPubMed
Te Braake, M.F.H., Groen, A.F. & Van Der Lught, A.W. 1994. Trends in inbreeding in Dutch Black and White dairy cattle. Journal of Animal Breeding and Genetics, 111: 356366.Google Scholar
Valera, M., Molina, A., Gutierrez, J.P., Gomez, J. & Goyache, F. 2005. Pedigree analysis in the Andalusian horse: population structure, genetic variability and influence of the Carthusian strain. Livestock Production Science, 95: 5766.Google Scholar
VanRaden, P.M. 1992. Accounting for inbreeding and crossbreeding in genetic evaluation of large populations. Journal of Dairy Science, 75: 31363144.Google Scholar
Verrier, E., Colleau, J.J. & Foulley, J.-L. 1993. Long-term effects of selection based on the animal model BLUP in a finite population. Theoretical and Applied Genetics, 87: 446454.Google Scholar
Weigel, K.A. 2001. Controlling inbreeding in modern breeding programmes. Journal of Dairy Science, 84: E177E184.Google Scholar
Wiener, G. 1953. Breed structure in the pedigree Ayrshire cattle population in Great Britain. Journal of Agricultural Science, 43: 123–30.CrossRefGoogle Scholar
Wray, N.R. & Goddard, M.E. 1994. Increasing long-term response to selection. Genetics Selection and Evolution, 26: 431451.Google Scholar
Young, C.W. & Seykora, A.J. 1996. Estimates of inbreeding and relationship among registered Holstein females in the United States. Journal of Dairy Science, 79: 502505.CrossRefGoogle ScholarPubMed