Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-20T03:26:10.405Z Has data issue: false hasContentIssue false

The use of indigenous cattle in terminal cross-breeding to improve beef cattle production in Sub-Saharan Africa

Published online by Cambridge University Press:  06 May 2010

M.M. Scholtz*
Affiliation:
ARC-Animal Production Institute, Private Bag X2, Irene 0062, South Africa Department of Animal, Wildlife and Grassland Sciences, UFS, P.O. Box 339, Bloemfontein 9300, South Africa
A. Theunissen
Affiliation:
Northern Cape Department of Agriculture, Land Reform and Rural Development, Private Bag X9, Jan Kempdorp 8550, South Africa
*
Correspondence to: M.M. Scholtz, ARC-Animal Production Institute, Private Bag X2, Irene 0062, South Africa. email: [email protected]
Get access

Summary

The role indigenous livestock can play in Africa's Livestock Revolution is not always recognized. In many parts of Africa pure breeding with indigenous breeds is the only viable production strategy because of adverse climatic and nutritional conditions. However, there are scenarios where the higher demands of exotic breeds and their cross-breds can be met. This article discusses the possibility of improving beef production through terminal cross-breeding with two South African cattle breeds, the Nguni and the Afrikaner, with different exotic breeds. Calving difficulties were limited and birth weights were restricted to the mid-parent value or below. Cross-breeding did not have a negative effect on cow performance such as weight change and fertility, but cow productivity increased. In most cases the weaning weight of cross-bred calves was the same or exceeded that of the pure sire breed, and the feed conversion ratio was always better than either of the two parent breeds. This made the feedlot performance of the cross-breds highly desirable. These results indicate that terminal cross-breeding with indigenous African breeds deserves more attention as a means of increasing the output of beef cattle in the subtropics and tropics. An added advantage of any system of terminal cross-breeding utilizing indigenous breeds is that the conservation and utilization of the indigenous breeds of Africa is ensured, because a constant stream of purebred females will be required.

Résumé

Le rôle que les animaux d'élevage indigènes peuvent jouer dans la révolution de l'élevage en Afrique n'est pas toujours reconnu. Dans de nombreuses régions de l'Afrique, l'élevage en race pure avec les races indigènes est la seule stratégie de production viable à cause des conditions climatiques et nutritionnelles défavorables. Cependant, dans certains contextes, on peut trouver des demandes plus élevées pour les races exotiques et leurs croisés. Cet article aborde la possibilité d'améliorer la production de viande de bœuf par le biais de croisements terminaux avec deux races de bovins de l'Afrique du Sud, la race Nguni et la race Afrikaner, dans des croisements avec des races exotiques différentes. Les difficultés de vêlage ont été limitées et les poids à la naissance étaient restreints à la valeur moyenne parentale ou au-dessous de cette valeur. Les croisements n'ont pas eu d'effet négatif sur la performance des vaches comme le changement de poids et la fertilité, tandis que la productivité des vaches a augmenté. Dans la plupart des cas, le poids au sevrage des veaux croisés était le même ou supérieur par rapport au poids des pères de race pure et la capacité d'utilisation du fourrage était toujours meilleure que celle des deux races parentales, ce qui a rendu la performance de l'unité d'embouche des croisés hautement recherchée. Ces résultats indiquent que le croisement terminal avec les races indigènes africaines mérite plus d'attention en tant que moyen pour augmenter le rendement des bovins à viande dans les régions sous-tropicales et tropicales. Un autre avantage de tout système de croisement terminal qui utilise les races indigènes est que la conservation et l'utilisation des races indigènes de l'Afrique sont garanties, puisqu'un flot continu de femelles de race pure sera nécessaire.

Resumen

El papel que el ganado autóctono puede desempeñar en la Revolución Ganadera de África no es siempre reconocido. En muchas partes de África la cría de animales con razas locales es la única estrategia de producción viable, debido a las adversidades climáticas y a las condiciones nutricionales. Sin embargo, hay escenarios en los que existe demanda de razas exóticas y sus cruces. Este artículo trata acerca de la posibilidad de mejorar la producción de carne de ternera por medio de cruces terminales con dos razas bovinas sudafricanas, la Nguni y la Afrikaner, cruzadas con diferentes razas exóticas. Las dificultades durante el parto fueron limitadas y los pesos al nacimiento se limitaron al valor de los medios padres o más bajo. El cruzamiento no tuvo un efecto negativo sobre el rendimiento de las vacas, tal como el cambio de peso y la fertilidad, mientras que la productividad de la vaca aumentó. En la mayor parte de los casos el peso al destete de los terneros cruzados fue el mismo, o superior a aquellos cuyos padres eran de raza pura, y el índice de conversión fue siempre mejor que cualquiera de las dos razas padre. Bajo control de la alimentación el rendimiento altamente deseable. Estos resultados demuestran que cruces terminales con razas locales africanas merecen más atención como medio para incrementar la producción de carne de ternera en el subtrópico y trópico. Una ventaja añadida de cualquier sistema de cruces terminales es la utilización de razas locales, lo que asegura la conservación y la utilización de las razas locales de África, dado que se requerirán constantemente hembras criadas en pureza.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acocks, J.P.H. 1988. Veld types of South Africa. National Botanical Institute, Pretoria, South Africa, 146 pp.Google Scholar
Baker, J.F., Bryson, W.L. & Knutson, R. 1987. Feed intake and growth during finishing of Angus-, Charolais- and Piedmontese-sired calves when slaughtered at similar measurements of subcutaneous fat. J. Anim. Sci., 65(Suppl.): 1012.Google Scholar
Bergh, L. 1999. Introduction: beef cattle improvement scheme. In Scholtz, M.M., Bergh, L. & Bosman, D.J., eds. Beef breeding in South Africa. Irene, South Africa, Agricultural Research Council, Animal Improvement Institute.Google Scholar
Bruford, M.W., Bradley, D.G. & Luikart, G. 2003. DNA markers reveal the complexity of livestock domestication. Nat. Rev. Genet., 4: 900910.CrossRefGoogle ScholarPubMed
Calegare, L., Alencar, M.M., Packer, I.U. & Lanna, D.P.D. 2007. Energy requirements and cow/calf efficiency of Nellore and Continental and British Bos Taurus × Nellore crosses. J. Anim. Sci., 85: 24132422.CrossRefGoogle ScholarPubMed
De Bruyn, J.F. 1991. Production and product characteristics of different cattle genotypes under feedlot conditions. University of Pretoria, South Africa. (D.Sc. thesis)Google Scholar
Delgado, C., Rosegrant, M., Steinfeld, H., Ehui, S. & Courbois, C. 1999. Livestock to 2020: the next food revolution. Washington, DC, International Food Policy Research Institute, FAO, and International Livestock Research Institute.Google Scholar
Doren, P.E., Shumway, C.R., Kothmann, M.M. & Cartwright, T.C. 1985. An economic evaluation of simulated biological production of beef cattle. J. Anim. Sci., 60: 913934.CrossRefGoogle Scholar
Els, D.L. 1988. Kruisteling vir vleisbeeste. University of the Orange Free State, South Africa. (Ph.D. thesis)Google Scholar
Ferrell, C.L. & Jenkins, T.G. 1985. Cow type and nutritional environment: nutritional aspects. J. Anim. Sci., 61: 725741.CrossRefGoogle ScholarPubMed
Hanotte, O., Bradley, D.G., Ochieng, Y.V., Hill, E.W. & Rege, J.E.O. 2002. African pastoralism: genetic imprints of origins and migrations. Science, 296: 336339.CrossRefGoogle ScholarPubMed
Harvey, W.R. 1972. Instructions of use of least squares maximum likelihood mixed model general purpose program (LSMLMM). Columbus, OH, USA, Ohio State University.Google Scholar
Harvey, W.R. 1976. Instructions of use of revised least squares and maximum likelihood mixed model general purpose program (LSMLMM). Columbus, OH, USA, Ohio State University.Google Scholar
Hazell, P., Poulton, C., Wiggins, S. & Dorward, A. 2007. The future of small farms for poverty reduction and growth. IFPRI Discussion Paper 42 (available at http://www.ifpri.org/2020/dp/vp42.asp).Google Scholar
International Water Management Institute. 2007. Water for food, water for life. A comprehensive assessment of water management in agriculture. London, Earthscan, and Colombo, International Water Management Institute. 645 pp.Google Scholar
Long, C.R. 1980. Crossbreeding for beef production: experimental results. J. Anim. Sci., 51: 11971223.CrossRefGoogle Scholar
MacNeil, M.D. 2005. Breeding objectives for Angus cattle in South Africa and the United States, pp. 1723. Paper presented at the 9th World Angus Forum Technology Meeting, Cape Town, South Africa.Google Scholar
MacNeil, M.D. & Matjuda, L.E. 2007. Breeding objectives for Angus and Charolais specialized sire lines for use in the emerging sector of South African beef production. S. Afr. J. Anim. Sci., 37: 110.Google Scholar
MacNeil, M.D. & Newman, S. 1991. Using heterosis to increase profit, pp. 129134. Paper presented at the International Beef Symposium, Great Falls, MN, USA.Google Scholar
Olentine, C.G., Bradley, N.W., Boling, J.A. & Moody, W.G. 1976. Comparison of Charolais-crossbred and Angus yearling steers finished on pasture. J. Anim. Sci., 42(6): 1375.CrossRefGoogle Scholar
Roux, C.Z. 1992. Maximum herd efficiency in meat production. III. Feeder–breeder dimorphism. S. Afr. J. Anim. Sci., 22: 1115.Google Scholar
Schoeman, S.J. 1999. Cross breeding in beef cattle. In Scholtz, M.M., Bergh, L. & Bosman, D.J., eds. Beef breeding in South Africa. Irene, South Africa, Agricultural Research Council, Animal Improvement Institute.Google Scholar
Scholtz, M.M. 1988. Selection possibilities for hardy beef breeds in Africa: the Nguni example, pp. 303319. Paper presented at the 3rd World Congress on Sheep and Beef Cattle Breeding.Google Scholar
Scholtz, M.M. 2005. The role of research and the seed stock industry in the in situ conservation of livestock genetic resources, pp. 311316. Paper presented at the 4th All Africa Conference on Animal Agriculture, Arusha, Tanzania.Google Scholar
Scholtz, M.M. 2007. Innovative mating practice to breed highly fertile replacement heifers in a terminal crossbreeding system. SA. Anim. Sci., 8: 2930.Google Scholar
Scholtz, M.M. & Lombard, P.E. 1992. Prospects and potential of Southern African cattle breeds: the Nguni example. Proc. Aust. Assoc. Anim. Breed. Genet., 10: 4750.Google Scholar
Scholtz, M.M., Roux, C.Z. & Lombard, P.E. 1990. Breeding strategies for beef cattle in the subtropics and tropics: terminal crossbreeding, pp. 361364. Paper presented at the 4th World Congress on Genetic Applications in Livestock Production.Google Scholar
Smith, C.M., Laster, D.B., Cundiff, L.V. & Gregory, K.E. l976. Characterization of biological types of cattle. II. Postweaning growth and feed efficiency of steers. J. Anim. Sci., 43(1): 37.CrossRefGoogle Scholar
Southgate, J.R., Cook, J.L. & Kempster, A.J. 1982. A comparison of the progeny of British Friesian dams and different sire breeds on 16- and 24-month beef production systems. 1. Live-weight gain and efficiency of feed utilization. Anim. Prod., 34: 155166.Google Scholar
Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M. & de Haan, C. 2006. Livestock's long shadow: environmental issues and options. Rome, FAO, 390 pp.Google Scholar
Thompson, C.E., Woods, S.G. & Meadows, S.E. 1986. Comparison of five dam breeds under two nutritional environments, pp. 331335. Paper presented at the 3rd World Congress on Genetic Applications in Livestock Production.Google Scholar
United Nations Environment Programme. 2007. GEO4 global environment outlook, Environment for development. Nairobi, Kenya, United Nations Environment Programme. 540 pp.Google Scholar