Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T01:43:50.976Z Has data issue: false hasContentIssue false

Productivity and morphology of Ankole cattle in three livestock production systems in Uganda

Published online by Cambridge University Press:  01 June 2011

D.R. Kugonza*
Affiliation:
Department of Animal Science, Faculty of Agriculture, Makerere University, Kampala, Uganda International Livestock Research Institute, Nairobi 0100, Kenya
M. Nabasirye
Affiliation:
Department of Crop Science, Faculty of Agriculture, Makerere University, Kampala, Uganda
D. Mpairwe
Affiliation:
Department of Animal Science, Faculty of Agriculture, Makerere University, Kampala, Uganda
O. Hanotte
Affiliation:
International Livestock Research Institute, Nairobi 0100, Kenya
A.M. Okeyo
Affiliation:
International Livestock Research Institute, Nairobi 0100, Kenya
*
Correspondence to: D.R. Kugonza, Department of Animal Science, Faculty of Agriculture, Makerere University, PO Box 7062, Kampala, Uganda. email: [email protected]
Get access

Summary

Phenotypic characterization is critical in breed improvement and conservation. To determine the performance and morphological features of Ankole cattle in three livestock production systems (LPS) of Uganda, 248 farms were studied. Height at withers (HW), heart girth (HG), body length (BL), ear length, horn length (HL), distance between horn tips (HS) and body weight (BW) were then measured on 120 bulls and 180 cows. Data were analysed using LPS (crop livestock, agropastoral, pastoral), county (Gomba, Kazo, Kiboga, Mawoggola, Nyabushozi) and sex (females, males) as main factors. In the results, age at sexual maturity was 23.6 ± 0.5 months for bulls and 22.7 ± 0.5 months for cows. Age at first calving was 33.2 ± 0.5 months, whereas calving interval was 12.9 ± 0.8 months. Lactation length differed between LPS (5.5 ± 0.4, 6.3 ± 0.3 and 7.4 ± 0.2 months in agropastoral, crop livestock and pastoral, respectively). Mean daily milk off take was 2.2 ± 0.1 kg/cow whereas preweaning calf survivability was 90.0 ± 6.5%. Sex and LPS significantly influenced HW, HL and HS. Positive correlations were observed between BW and HG, BL and HL. Correlation coefficients were much lower in females than in males, except for BW vs HG and BW vs HW. Results show wide variations both in performance and morphology suggesting that within breed selection scheme and/or management improvement may lead to productivity improvements.

Résumé

La caractérisation phénotypique est fondamentale dans l'amélioration et la conservation de la race. Afin de déterminer la performance et les caractéristiques morphologiques des bovins Ankolé dans trois systèmes de production animale de l'Ouganda, on a entrepris des études dans 248 fermes. La hauteur au garrot, le périmètre thoracique, la longueur du corps, des oreilles et des cornes, la distance entre les pointes des cornes et le poids corporel de 120 taureaux et de 180 vaches ont été alors mesurés. On a ensuite analysé les données en utilisant comme facteurs principaux le système de production animale (mixte, agropastoral, pastoral), le district (Gomba, Kazo, Kiboga, Mawoggola, Nyabushozi) et le sexe (femelle, mâle). Les résultats ont été les suivants: l'âge à la maturité sexuelle était pour les taureaux de 23,6 ± 0,5 mois et pour les vaches de 22,7 ± 0,5 mois, l'âge à la première mise bas était de 33,2 ± 0,5 mois, tandis que l'intervalle entre les mises bas était de 12,9 ± 0,8 mois. La période de lactation variait selon le type de système de production (5,5 ± 0,4, 6,3 ± 0,3 et 7,4 ± 0,2 mois respectivement dans les systèmes agropastoral, mixte et pastoral). Le rendement moyen journalier de lait était de 2,2 ± 0,1 kg par vache tandis que la survie des veaux avant le sevrage était de 90,0 ± 6,5 pour cent. Le sexe et le système de production influençaient de façon significative la hauteur au garrot, la longueur des cornes et la distance entre les pointes des cornes. On a observé des corrélations positives entre le poids corporel et le périmètre thoracique, la longueur du corps et la longueur des cornes. Les coefficients de corrélation étaient nettement inférieurs pour les femelles que pour les mâles, à l'exception des rapports poids corporel/périmètre thoracique et poids corporel/hauteur au garrot. Les résultats montrent des écarts considérables tant dans la performance que dans la morphologie, suggérant ainsi qu'un programme de sélection et/ou l'amélioration de la gestion pourraient développer la productivité de la race.

Resumen

La caracterización fenotípica tiene una importancia fundamental en la mejora y conservación de razas. Se han estudiado 248 explotaciones en Uganda para determinar el rendimiento y las características morfológicas del ganado Ankole en tres sistemas de producción (LPS, por sus siglas en inglés) de Uganda. Se han medido en 120 toros y 180 vacas la alzada a la cruz (HW, por sus siglas en inglés), perímetro torácico (HW, por sus siglas en inglés), diámetro longitudinal (BL, por sus siglas en inglés), longitud de la oreja (EL, por sus siglas en inglés), longitud del cuerno (HL, por sus siglas en inglés), distancia entre las puntas de los cuernos (HS, por sus siglas en inglés) y el peso corporal (BW, por sus siglas en inglés). Los datos han sido analizados utilizando LPS (pastos para el ganado, agropastoral, pastoral), el condado (Gomba, Kazo, Kiboga, Mawoggola, Nyabushozi) y el sexo (hembras y machos) como factores principales. En los resultados, la edad de madurez sexual (ASM, por sus siglas en inglés) fue de 23.6 ± 0.5 meses para los toros y de 22.7 ± 0.5 para las vacas. La edad para el primer parto (AFC, por sus siglas en inglés) fue de 33.2 ± 0.5 meses, mientras que el intervalo entre partos (CI, por sus siglas en inglés) fue de 12.9 ± 0.8 meses. La duración de la lactación (LL, por sus siglas en inglés) difirió entre LPS (5.5 ± 0.4, 6.3 ± 0.3 y 7.4 ± 0.2 meses en agropastoral, pastos para el ganado y pastoral, respectivamente). La producción media de leche fue de 2.2 ± 0.1 kg/vaca mientras que la supervivencia antes del destete fue de 90.0 ± 6.5%. El sexo y LPS influyó significativamente en HW, HL y HS. Se observaron correlaciones positivas entre BW y HG, BL y HL. Los coeficientes de correlación fueron mucho más bajos en las hembras que en los machos, excepto en BW vs HG y BW vs HW. Los resultados muestran grandes variaciones entre rendimiento y morfología, sugiriendo que dentro del plan de selección racial y/o de gestión puede conllevar mejora sustancial en el campo de la productividad.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adeyinka, I.A. & Mohammed, I.D. 2006. Relationship of live weight and linear body measurement in two breeds of goat of Northern Nigeria. J. Anim. Vet. Adv., 5(11): 891893.Google Scholar
Alderson, G.L.H. 1999. The development of a system of linear measurements to provide an assessment of type and function of beef cattle. Anim. Genet. Resour. Inf., 25: 4556.CrossRefGoogle Scholar
Bester, J., Matjuda, L.E., Rust, J.M. & Fourie, H.J. 2003. The Nguni: a case study. ARC-NR. South Africa, Animal Improvement Institute. 36 pp.Google Scholar
Brown, C.J., Brown, A.H. Jr & Johnson, Z. 1983. Studies of body dimensions of beef cattle. Arkansas Experiment Station. Bulletin No. 863.Google Scholar
De Leeuw, P.N. & Wilson, R.T. 1987. Comparative productivity of indigenous cattle under traditional management in sub-Saharan Africa. Q. J. Int. Agric., 26: 377390.Google Scholar
FAO. 2008. FAOSTAT data 2008. Food and Agriculture Organisation of the United Nations, Rome, Italy (available at http://faostat.fao.org/faostat).Google Scholar
FAO. 2009. Domestic Animal Diversity Information System. Food and Agriculture Organisation of the United Nations, Rome, Italy (available http://www.fao.org/dad-is).Google Scholar
Gatesy, J. & Arctander, P. 2000. Hidden morphological support for the phylogenetic placement of Pseudoryx ngetinhensis with bovine bovids: a combined analysis of gross anatomical evidence and DNA sequences from five genes. Syst. Biol., 49(3): 515538.CrossRefGoogle ScholarPubMed
Ghotge, N. & Ramdas, S. 2003. Livestock and livelihoods. In CIP-UPWARD (ed) Conservation and sustainable use of agricultural biodiversity. a sourcebook, pp. 190–196. International Potato Center (in collaboration with GTZ, IDRC, IPGRI and SEARICE), Los Banos, Laguna, Philippines.Google Scholar
Goe, M.R., Alldredge, J.R. & Light, D. 2001. Use of heart girth to predict body weight of working oxen in the Ethiopian highlands. Livestock Prod. Sci., 69(2): 187195.CrossRefGoogle Scholar
Groombridge, B. ed. 1992. Global biodiversity: status of the Earth's living resources. World Conservation Monitoring Centre. London, Chapman and Hall.CrossRefGoogle Scholar
Hoffmann, I. 2010. Livestock biodiversity. Rev. Sci. Tech. Off. Int. Epiz., 29(1): 7386.CrossRefGoogle ScholarPubMed
Kamalzadeh, A., Koops, W.J. & van Bruchem, J. 1998. Feed quality restriction and compensatory growth in growing sheep: modelling changes in body dimensions. Livestock Prod. Sci., 53: 5767.CrossRefGoogle Scholar
Kosgey, I.S., Baker, R.L., Udo, H.M.J. & van Arendonk, J.A.M. 2006. Successes and failures of small ruminant breeding programmes in the tropics: a review. Small Rumin. Res., 61: 1328.CrossRefGoogle Scholar
Kugonza, D.R., Bareeba, F.B. & Petersen, P.H. 2001. Response to phenotypic screening of Mubende meat goats. MUARIK Bull., 4: 1824.Google Scholar
Lamwaka, S. 2006. Ugandan pastoralists hit by market reforms., PANOS features. London, PANOS (available at http://www.panos.org.uk/newsfeatures/featuredetails.asp).Google Scholar
Mwacharo, J.M., Okeyo, A.M., Kamande, G.K. & Rege, J.E.O. 2006. The small East African shorthorn zebu cows in Kenya. I: Linear body measurements. Trop. Anim. Health Prod., 38: 6574.CrossRefGoogle ScholarPubMed
Mwebaze, S.M.N. 2002. Country pasture/forage resource profiles. In Grassland and pasture crops. Rome, Italy, FAO (available at www.fao.org/ag/AGP/AGPC/doc/counprof/Uganda).Google Scholar
Ndumu, D.B., Baumung, R., Hanotte, O., Wurzinger, M., Okeyo, A.M., Jianlin, H., Kibogo, H. & Sölkner, J. 2008. Genetic and morphological characterisation of the Ankole Longhorn cattle in the African Great Lakes region. Genet. Select. Evol., 40: 467490.Google ScholarPubMed
Payne, W.J.A. & Hodges, J. 1997. Tropical cattle origins, breeds and breeding policies. Oxford, UK, Blackwell Science.Google Scholar
Payne, J.A. & Wilson, T.R. 1999. an introduction to animal husbandry in the tropics. Oxford, UK, Blackwell Science Ltd.Google Scholar
Perry, B.D., Randolf, T.F., McDermott, J.J., Sones, K.R. & Thornton, P.K. 2002. Investing in animal health research to alleviate poverty. Nairobi, Kenya, ILRI. 148 pp.Google Scholar
Petersen, P.H., Ndumu, D.B., Kiwuwa, G.H., Kyomo, M.L., Semambo, D.K.N., Rowlands, G.J., Nagda, S.N. & Nakimbugwe, H. 2003. Characteristics of Ankole Longhorn cattle and their production environments in South Western Uganda: milk off take and body measurements. Anim. Genet. Resour. Inf., 34: 19.CrossRefGoogle Scholar
Philipsson, J., Ojango, J.M., Malmfors, B. & Okeyo, A.M. 2006. In ILRI-SLU animal genetics training resource, CD version 2. Kenya, ILRI, and Sweden, SLU Uppsala.Google Scholar
Rege, J.E.O. ed. 1999. Economic evaluation of animal genetic resources.In Proc. of a FAO/ILRI Workshop, 15–17 March 1999, FAO Headquarters, Rome, Italy. 80 pp.Google Scholar
Rege, J.E.O. & Bester, J. 1998. Livestock resources and sustainable development in Africa. In Proc. 6th World Congress on Genetics Applied Livestock Production, Vol. 26, pp. 19–26. Armidale, Australia, 11–16 January 1998.Google Scholar
Rege, J.E.O., Kahi, A.K., Okomo-Adhiambo, M., Mwacharo, J. & Hanotte, O. 2001. Zebu cattle of Kenya: uses, performance, farmer preferences, measures of genetic diversity and options for improved use. Animal Genetic Resources Research. Nairobi, Kenya, ILRI. 103 pp.Google Scholar
SAS. 2004. Statistical Analysis Systems SAS OnlineDoc version 9.1.3. Cary, NC, USA, SAS Institute Inc.Google Scholar
The Animal Breeding Act. 2001. The Animal Breeding Act of the parliament of the Republic of Uganda. 25 May 2001. 47 pp.Google Scholar
Twinamasiko, N.I. 2001. Dairy production. In J.K. Mukiibi ed. Agriculture in Uganda. Livestock and fisheries, Vol. 4, pp. 18–42. Fountain Publishers/CTA/NARO, Kampala, Uganda.Google Scholar
Willis, M.B. 2001. Dalton's introduction to practical animal breeding. 3rd edn.Oxford, Blackwell Scientific Publications. 159 pp.Google Scholar
Wurzinger, M., Ndumu, D., Baumung, R., Drucker, A., Okeyo, A.M., Semambo, D.K., Byamungu, N. & Sölkner, J. 2007. Comparison of production systems and selection criteria of Ankole cattle by breeders in Burundi, Rwanda, Tanzania and Uganda. Trop. Anim. Health Prod. 38: 571581.CrossRefGoogle Scholar
Zechner, P., Zohman, F., Sölkner, J., Bodo, I., Habe, F. & Marti, E. 2001. Morphological description of the Lipizzan horse population. Livestock Prod. Sci. 69(2): 163177.CrossRefGoogle Scholar