Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T01:33:49.630Z Has data issue: false hasContentIssue false

Patterns of indigenous female cattle morphometric traits variations in Uganda: Evidence for farmers’ selection to enhance agro-ecological fitness

Published online by Cambridge University Press:  02 February 2015

F. Kabi
Affiliation:
Molecular Genetics Laboratory, Department of Environmental Management, Makerere University, P.O. Box 7098, Kampala, Uganda National Livestock Resources Research Institute (NaLIRRI), P.O. Box 96, Tororo, Uganda
C. Masembe*
Affiliation:
Department of Biological Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
R. Negrini
Affiliation:
Istituto di Zootecnica, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
V. Muwanika
Affiliation:
Molecular Genetics Laboratory, Department of Environmental Management, Makerere University, P.O. Box 7098, Kampala, Uganda
*
*Correspondence to: C. Masembe, Department of Biological Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda. email: [email protected]
Get access

Summary

Globally, rural cattle keeping communities actively select and breed indigenous cattle to satisfy their interests and enhance adaptation to local landscapes. This study investigated how traditional systems in Uganda have shaped the morphometric population structure of indigenous cattle breeds. Ten linear morphometric traits were interrogated amongst 801 female cattle, comprising 46 Nganda (Bos indicus), 368 Ankole (B. taurus indicus) and 387 East African shorthorn zebu (EASZ, B. indicus). The study cattle were obtained evenly at random from 209 herds in their agro-ecological zones (AEZs) where they have been nurtured by traditional cattle keeping communities throughout Uganda. Age, AEZs and breed significantly influenced the variation of linear morphometric traits exhibiting a gradient of low, intermediate and high dimensions among the EASZ, Nganda and Ankole cattle, respectively. Likewise, the linear morphometric trait (Mahalanobis squared distance) diversity was significantly different exhibiting a gradient of low, intermediate and high variation between Nganda and EASZ, Ankole and Nganda, and Ankole and EASZ cattle, respectively. These findings demonstrate the role of agro-ecological fitness in the evolution of indigenous cattle morphometric population structure in Uganda. The study outcomes further provide a motivation to search for genes associated with the diverse morphometric features.

Résumé

Globalement, le bétail rurales en gardant les communautés sélectionner activement et élèvent du bétail autochtones à satisfaire leurs intérêts et améliorer l'adaptation aux paysages locaux. Cette étude a examiné comment les systèmes traditionnels en Ouganda ont façonné la structure de la population morphométrique des races bovines autochtones. Dix traits morphométriques linéaires ont été interrogés entre 801 bovins femelles, comprenant 46 Nganda (Bos indicus), 368 Ankole (B. taurus indicus) et 387 East African Shorthorn Zébu (EASZ, B. indicus. Les bovins de l’étude ont été obtenus uniformément au hasard à partir de 209 troupeaux dans leurs zones agro-écologiques (ZAE) où ils ont été nourris par l’élevage traditionnel de maintien de communautés à travers l'Ouganda. Âge, ZAE et élever significativement influencé la variation de traits morphométriques linéaires présentant un gradient de dimensions faibles, intermédiaires et élevés chez les EASZ, Nganda et Ankole bétail respectivement. De même, le caractère linéaire morphométrique (Mahalanobis distance au carré) la diversité est significativement différente présentant un gradient de faible, moyenne et forte variation entre Nganda et EASZ, Ankole et Nganda, Ankole et bétail EASZ respectivement. Ces résultats démontrent le rôle de remise en forme agro- écologique dans l’évolution de la structure de la population des bovins morphométrique indigène en Ouganda . Les résultats fournissent en outre une motivation à rechercher des gènes liés aux caractéristiques morphométriques diverses.

Resumen

En todos los países del Mundo, las comunidades rurales de ganaderos seleccionan activamente y crían el ganado bovino autóctono con el fin de satisfacer sus intereses y de mejorar la adaptación al entorno local. Este estudio pretendió determinar de qué manera los sistemas tradicionales han conformado, en Uganda, la estructura morfométrica de la población de razas bovinas autóctonas. Se midieron diez rasgos morfométricos lineales en 801 hembras de ganado bovino, entre las cuales 46 de raza Nganda (Bos indicus), 368 de raza Ankole (B. taurus indicus) y 387 de Cebú de Cuernos Cortos del Este de África (EASZ por sus siglas en inglés, B. indicus). Los animales del estudio fueron tomados, por toda Uganda, equitativamente y al azar, de 209 rebaños, en las zonas agroecológicas en las que habían sido criados por comunidades tradicionales de ganaderos. La edad, la zona agroecológica y la raza influyeron significativamente sobre la variación de los rasgos morfométricos lineales, mostrando un gradiente de bajo, intermedio y alto en las medidas para el ganado EASZ, Nganda y Ankole, respectivamente. Asimismo, la diversidad en los rasgos morfométricos lineales (distancia cuadrática de Mahalanobis) difirió significativamente, mostrando un gradiente de bajo, intermedio y alto para la variación entre Nganda y EASZ, entre Ankole y Nganda y entre Ankole y EASZ, respectivamente. Estos resultados demuestran el papel de la adaptación a la zona agroecológica en la evolución de la estructura morfométrica de la población de ganado bovino autóctono en Uganda. Lo hallado en este estudio anima a buscar los genes asociados con las diversas características morfométricas.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alderson, G.L.H. 1999. The development of a system of linear measurements to provide an assessment of type and function of beef cattle. Anim. Genet. Resour. Inf., 25: 4556.Google Scholar
Anderson, S. 2003. Animal genetic resources and sustainable livelihoods. Ecol. Econ., 45: 331339. doi: 10.1016/S0921-8009(03)00088-0.CrossRefGoogle Scholar
Balikowa, D. 2011. Dairy development in Uganda: a review of Uganda's dairy industry, Dairy Development Authority (DDA), Uganda. (also available at http://www.fao.org/3/a-aq292e.pdf). Accessed 20 February 2014.Google Scholar
Bett, R.C., Okeyo, M.A., Malmfors, B., Johansson, K., Agaba, M., Kugonza, D.R., Bhuiyan, A., Filho, A.E.V., Mariante, A.S., Mujibi, F.D. & Philipsson, J. 2013. Cattle breeds: extinction or quasi-extant? Resources, 2: 335357. doi: 10.3390/resources2030335.Google Scholar
FAO (Food and Agricultural Organisation of the United Nations). 2007. In Rischkowsky, B. & Pilling, D., eds. The State of the World's Animal Genetic Resources for Food and Agriculture, Rome FAO, Rome Italy 511 p. (accessed: 20 February 2014 at ftp://193.43.36.93/docrep/fao/010/a1250e/a1250e.pdf).Google Scholar
FAO (Food and Agricultural Organisation of the United Nations). 2009. Livestock keepers – guardians of biodiversity. Animal Production and Health Paper, No. 167. Rome.Google Scholar
Federation of Animal Science Societies (FASS). 2010. Guide for the care and use of agricultural animals in research and teaching, 3rd edition. 2441 Village Green Place Champaign, IL, Federation of Animal Science Societies (FASS), 177 pp. (also available at http://www.fass.org). Accessed 20 February 2014.Google Scholar
Galukande, E., Mulindwa, H., Wurzinger, M., Roschinsky, R., Mwai, A.O. & Sölkner, J. 2013. Cross-breeding cattle for milk production in the tropics: achievements, challenges and opportunities. Anim. Genet. Res., 52: 111125. doi: 10.1017/S2078633612000471.CrossRefGoogle Scholar
Hanotte, O., Dessie, T. & Kemp, S. 2010. Time to tap Africa's livestock genomes. Science, 328: 16401641. doi: 10.1126/science.1186254.CrossRefGoogle ScholarPubMed
Herrero, M., Thornton, P.K., Notenbaert, A., Msangi, S., Wood, S., Kruska, R., Dixon, J., Bossio, D., van de Steeg, J., Freeman, H.A., Li, X. & Rao, P.P. 2012. Drivers of change in crop–livestock systems and their potential impacts on agro-ecosystems services and human wellbeing to 2030: a study commissioned by the CGIAR System wide Livestock Programme. Nairobi, Kenya, ILRI.Google Scholar
Hoffmann, I. 2010. Climate change and the characterization, breeding and conservation of animal genetic resources. Anim. Genet., 41: 3246. doi: 10.1111/j.1365-2052.2010.02043.x.Google Scholar
IBM® SPSSS® Corp. 2012. IBM SPSS statistics base 21 user's guide. Armonk, NY, USA, IBM Corp.Google Scholar
Kabi, F., Masembe, C., Muwanika, V., Kirunda, H. & Negrini, R. 2014. Geographic distribution of non-clinical Theileria parva infection among indigenous cattle populations in contrasting agro-ecological zones of Uganda: implications for control strategies. Parasit. Vectors, 7: 414.CrossRefGoogle ScholarPubMed
Kugonza, D.R., Nabasirye, M., Mpairwe, D., Hanotte, O. & Okeyo, A.M. 2011. Productivity and morphology of Ankole cattle in three livestock production systems in Uganda. Anim. Genet. Resour., 48: 1322.CrossRefGoogle Scholar
Kugonza, D.R., Nabasirye, M., Mpairwe, D., Hanotte, O. & Okeyo, A.M. 2012. Pastoralists’ indigenous selection criteria and other breeding practices of the long-horned Ankole cattle in Uganda. Trop. Anim. Health Prod., 44: 557565.Google Scholar
Lamy, E., van Harten, S., Sales-Baptista, E., Guerra, M.M.M. & de Almeida, A.M. 2012. Factors influencing livestock productivity. In: Sejian, V, Naqvi, SMK, Ezeji, T, Lakritza, J, Lal, R editors. Environmental stress and amelioration in livestock production, pp. 1951. Berlin, Heidelberg, Springer.Google Scholar
Loquang, T.M. & Köhler-Rollefson, I. 2005. The potential benefits and challenges of agricultural animal biotechnology to pastoralists. In Paper Presented at the Fourth All Africa Conference on Animal Agriculture, Arusha, Tanzania, 19–26 September 2005.Google Scholar
M.A.A.I.F. (Ministry of Agriculture and Animal Industry and Fisheries). 2004. A Plan for Zonal Agricultural Production, Agro-processing and Marketing in Uganda, in INCREASING INCOMES THROUGH EXPORTS. Kampala, Uganda. (also available at http://www.ugandaexportsonline.com/strategies/zoning_plan.pdf). Accessed 20 January 2014.Google Scholar
M.A.A.I.F. (Ministry of Agriculture and Animal Industry and Fisheries)/U.B.O.S. (Uganda Bureau of Statiatics). 2009. National Livestock Census Report 2008. Kampala, Uganda. (also available at http://www.agriculture.go.ug). Accessed 26 November 2013.Google Scholar
M.A.A.I.F. (Ministry of Agriculture and Animal Industry and Fisheries). 2012. Proposed plan to operationalise the non-ATAAS component of the Agriculture sector development strategy and investment plan. (also available at http://www.agriculture.go.ug/userfiles/Final%20Synthesis%20Report%20-%20NON-ATAAS%20DSIP%2014%20November%20%202012-2.pdf). Accessed 20 January 2014.Google Scholar
Mwacharo, J.M., Okeyo, A.M., Kamande, G.K. & Rege, J.E.O. 2006. The small East African shorthorn zebu cows in Kenya. I: linear body measurements. Trop. Anim. Health Prod., 38: 6574. doi: 10.1007/s11250-006-4266-y.Google Scholar
Mwambene, P.L., Katule, A.M., Chenyambuga, S.W. & Mwakilembe, P.A.A. 2012. Fipa cattle in the southwestern highlands of Tanzania: morphometric and physical characteristics. Anim. Genet. Resour., 51: 1529. doi: 10.1017/S2078633612000136.Google Scholar
Nalule, S.A. 2010. Social management of rangelands and settlement in Karamoja. Kampala, FAO.Google Scholar
Ndumu, D.B., Baumung, R., Wurzinger, M., Drucker, A.G., Okeyo, A.M., Semambo, D. & Sölkner, J. 2008a. Performance and fitness traits versus phenotypic appearance in the African Ankole Longhorn cattle: a novel approach to identify selection criteria for indigenous breeds. Livestock Sci., 113: 234242.Google Scholar
Ndumu, D.B., Baumung, R., Hanotte, O., Wurzinger, M., Okeyo, A.M., Jianlin, H., Kibogo, H. & Sölkner, J. 2008b. Genetic and morphological characterisation of the Ankole Longhorn cattle in the African Great Lakes region. Genet. Sel. Evol., 40: 467490. doi: 10.1051/gse:2008014.Google ScholarPubMed
Rege, J.E.O., Marshall, K., Notenbaert, A., Ojango, J.M.K. & Okeyo, A.M. 2011. Pro-poor animal improvement and breeding. Livestock Sci., 136: 1528. doi: 10.1016/j.livsci.2010.09.003.Google Scholar
Scarpa, R., Ruto, E.S.K., Krinstjanson, P., Radeny, M., Drucker, A.G. & Rege, J.E.O. 2003. Valuing indigenous cattle breeds in Kenya: an empirical comparison of stated and revealed preference value estimates. Ecol. Econ., 45(3): 409426. doi: 10.1016/S0921-8009(03)00094-6.Google Scholar
StataCorp. 2013. Stata: release 12. Statistical software. College Station, TX, StataCorp LP.Google Scholar
Taberlet, P., Valentini, A., Rezaei, H.R., Naderi, S., Pompanon, F., Negrini, R. & Ajmone-Marsan, P. 2008. Are cattle, sheep, and goats endangered species? Mol. Ecol., 17: 275284. doi: 10.1111/j.1365-294X.2007.03475.x.Google Scholar
UBOS. 2013. Statistical abstract: main census report 2013. Kampala, Uganda Population and Housing Census.Google Scholar
Wilson, R.T. 2009. Fit for purpose – the right animal in the right place. Trop. Anim. Health Prod., 41: 10811090.Google Scholar
Yakubu, A., Salako, A.E. & Imumorin, I.G. 2011. Comparative multivariate analysis of biometric traits of West African Dwarf and Red Sokoto goats. Trop. Anim. Health Prod., 43: 561566.Google Scholar
Zhang, R. & Li, X. 2011. Association between IGF-IR, m-calpain and UCP-3 gene polymorphisms and growth traits in Nanyang cattle. Mol. Biol. Rep., 38: 21792184.CrossRefGoogle ScholarPubMed