Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T13:19:13.946Z Has data issue: false hasContentIssue false

Is cross-breeding of cattle beneficial for the environment? The case of mixed farming systems in Central Java, Indonesia

Published online by Cambridge University Press:  08 September 2015

T.S.M. Widi*
Affiliation:
Animal Production Systems Group, Department of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands Centre for Genetic Resources, PO Box 16, 6700 AA Wageningen, The Netherlands
H.M.J. Udo
Affiliation:
Animal Production Systems Group, Department of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
K. Oldenbroek
Affiliation:
Department of Animal Production, Faculty of Animal Science, Universitas Gadjah Mada, Jl. Fauna no 3, Kampus Bulaksumur UGM, Yogyakarta, Indonesia
I.G.S. Budisatria
Affiliation:
Centre for Genetic Resources, PO Box 16, 6700 AA Wageningen, The Netherlands
E. Baliarti
Affiliation:
Centre for Genetic Resources, PO Box 16, 6700 AA Wageningen, The Netherlands
T.C. Viets
Affiliation:
Animal Production Systems Group, Department of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
A.J. van der Zijpp
Affiliation:
Animal Production Systems Group, Department of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
*
*Correspondence to: T.S.M. Widi, Animal Production Systems Group, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands. email: [email protected]
Get access

Summary

Cross-breeding with European beef breeds has become a standard approach for the intensification of smallholder cattle production in Indonesia. This study assessed the environmental impact of cross-breeding, in terms of Global Warming Potential (GWP) and land use. We sampled 90 local Ongole and 162 cross-bred (Simmental × Ongole) cattle farms in four study areas. Expressed per kilogram of live weight of young stock produced, GWP (26.9 kg CO2–equivalents) and land use (34.2 m2) of farms with Ongole breeding stock were not significantly different from the GWP (28.9 kg CO2–equivalents) and land use (37.4 m2) of cross-bred farms. Cross-bred young stock grew faster, but in general cross-bred cattle required more feed. In the current smallholder production system, the dominant cross-breeding practice of using Simmental semen on Ongole and F1 cross-bred cows does not result in lower greenhouse gas emissions or land use per kilogram of live weight produced compared with farms with Ongole cows. The advantage from the faster growth of cross-breds is counteracted by the higher emissions from feed production for cross-breds.

Résumé

Le croisement avec des races européennes de bovins à viande est devenu un procédé standard dans le but d'intensifier la production bovine des petits propriétaires de l'Indonésie. Cette étude a évalué l'impact environnemental du croisement en termes de potentiel de réchauffement global (PRG) et d'utilisation de la terre. Les mesures ont été effectuées dans 90 exploitations de bovins locaux Ongole et dans 162 exploitations de bovins croisés (Simmental × Ongole) de quatre zones d’étude. Exprimés par kilogramme de poids vif de jeune bétail élevé, le PRG (26,9 kg d’équivalents de CO2) et les terres employées (34,2 m2) dans les exploitations ayant des reproducteurs Ongole n'ont pas différé significativement du PRG (28,9 kg d’équivalents de CO2) et des terres employées (37,4 m2) dans les exploitations à bovins croisés. Le jeune bétail croisé a grandi plus rapidement mais, en général, les bovins croisés ont eu besoin de plus d'aliments. Dans le système actuel de production des petits propriétaires, la pratique généralisée du croisement, en inséminant les vaches Ongole et les croisées F1 avec du sperme Simmental, n'entraîne pas une moindre émission de gaz à effet de serre ni un moindre besoin de terres, par kilogramme de poids vif produit, par rapport aux exploitations de vaches Ongole. L'avantage de la croissance plus rapide des bovins croisés est atténué par les plus grandes émissions du système de production des aliments destinés au bétail croisé.

Resumen

El cruzamiento con razas europeas de ganado bovino de carne se ha convertido en un procedimiento estándar para intensificar la producción de ganado bovino de los pequeños propietarios de Indonesia. Este estudio evaluó el impacto ambiental del cruzamiento en términos de potencial de calentamiento global (PCG) y de uso de la tierra. Se muestrearon 90 explotaciones de ganado local Ongole y otras 162 de ganado bovino cruzado (Simmental × Ongole) en cuatro zonas de estudio. Expresados por kilogramo de peso vivo de ganado joven producido, el PCG (26,9 kg de equivalentes de CO2) y la tierra empleada (34,2 m2) en las granjas con reproductores Ongole no difirieron significativamente del PCG (28,9 kg de equivalentes de CO2) y la tierra empleada (37,4 m2) en las explotaciones con ganado cruzado. El ganado joven cruzado creció más rápidamente pero, en términos generales, el ganado cruzado necesitó más alimento. En el sistema actual de producción de los pequeños propietarios, la práctica dominante del cruzamiento, consistente en utilizar semen Simmental para cubrir vacas Ongole y cruzadas F1, no conlleva una menor emisión de gases con efecto invernadero ni una menor necesidad de terreno, por kilogramo de peso vivo producido, en comparación con las explotaciones de vacas Ongole. La ventaja del crecimiento más rápido de los ejemplares cruzados se ve mitigada por las mayores emisiones del sistema de producción de alimentos para el ganado cruzado.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bosman, H.G., Moll, H.A.J. & Udo, H.M.J. 1997. Measuring and interpreting the benefits of goat keeping in tropical farm systems. Agric. Syst., 53: 349372.CrossRefGoogle Scholar
BPS. 2009. Badan Pusat Statistik, Indonesia (available at www.bps.go.id).Google Scholar
Casey, J.W. & Holden, N.M. 2006. Quantification of GHG emissions from sucker-beef production in Ireland. Agric. Syst., 90: 7998.Google Scholar
de Boer, I.J.M., Cederberg, C., Eady, S., Gollnow, S., Kristensen, T., Macleod, M., Meul, M., Phong, L.T., Thoma, G., Van der Werf, H. & Zonderlaand-Thomassen, M.A. 2011. Green house gas mitigation in animal production: towards and integrated life cycle sustainability assessment. Curr. Opin. Environ. Sustain., 3: 423431.CrossRefGoogle Scholar
de Vries, M. & de Boer, I.J.M. 2010. Comparing environmental impacts for livestock products: a review of life cycle assessments. Livest. Sci., 128: 111.Google Scholar
Delgado, C., Rosegrant, M., Steinfeld, H., Ehui, S. & Courbuis, C. 2000. Livestock to 2020: the next food revolution. Outlook Agric., 30: 2729.Google Scholar
Ecoinvent v.2. Available at www.pre.nl Google Scholar
FAO. 2007. The State of the World's Animal Genetic Resources for Food and Agriculture. Rischkowsky, Barbara & Pilling, Dafydd (eds.). Rome. (available at: http://www.fao.org/docrep/010/a1250e/a1250e00.htm).Google Scholar
FAO. 2010a. Breeding strategies for sustainable management of animal genetic resources. FAO Animal Production and Health Guidelines. No. 3. Rome. (available at: http://www.fao.org/docrep/012/i1103e/i1103e00.htm).Google Scholar
FAO. 2010b. Greenhouse gas emissions from the dairy sector: a life cycle assessment. FAO. Rome, Italy.Google Scholar
FAO. 2013. Tropical livestock units (TLU) (available at: http://www.fao.org/ag/againfo/programmes/en/lead/toolbox/Mixed1/TLU.htm), December 2013. FAO. Rome, Italy.Google Scholar
Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A. & Tempio, G. 2013. Tackling climate change through livestock – a global assessment of emissions and mitigation opportunities. Rome, FAO.Google Scholar
Hall, S.J.G. 2004. Livestock biodiversity. Genetic resources for the farming of the future. Oxford, Blackwell, 264 pp.Google Scholar
Hartadi, H., Reksohadiprodjo, S. & Tillman, A.D. 2005. Tabel Komposisi Pakan untuk Indonesia. Yogyakarta, Gadjah Mada University Press.Google Scholar
Herrero, M., Thornton, P.K., Notenbaert, A.M., Wood, S., Masangi, S., Freeman, H.A., Bossio, D., Dixon, J., Peters, M., van de Steeg, J., Lynam, J., Parthasarathy Rao, P., MacMillan, S., Gerard, B., McDermott, J., Sere, C. & Rosegrant, M. 2010. Smart investments in sustainable food production: revisiting mixed crop-livestock systems. Science 327: 822825.CrossRefGoogle ScholarPubMed
Hiernaux, P. & Diawara, M.O. 2014. Livestock: recyclers that promote the sustainability of smallholders farms. Rural 21: 911.Google Scholar
Hoffman, I. 2010. Climate change and the characterization, breeding and conservation of animal genetic resources. Anim. Genet., 41: 3246.Google Scholar
IPCC. 2006. Intergovernmental panel of climate change. Vol. 4, Japan, Guidelines for National Greenhouse Gas Inventories.Google Scholar
IPCC. 2007. Climate change. IPCC Fourth Assessment Report. UK, Cambridge University Press.Google Scholar
ISO 14040. 1997. Environmental management-life cycle assessment: principles and framework. International Organization for Standardization. Geneva, Switzerland. Google Scholar
ISO 14041. 1998. Environmental management – life cycle assessment: goal and scope definition and inventory analysis. International Organization for Standardization. Geneva, Switzerland.Google Scholar
ISO 14042. 2000. Environmental management – life cycle assessment: life cycle impact assessment. International Organization for Standardization. Geneva, Switzerland.Google Scholar
ISO 14043. 2000. Environmental management – life cycle assessment – life cycle interpretation. International Organization for Standardization. Geneva, Switzerland.Google Scholar
ISO 14044. 2006. Environmental management – life cycle assessment: requirements and guidelines. International Organization for Standardization. Geneva, Switzerland.Google Scholar
McDermott, J.J., Staal, S.J., Freeman, H.A., Herrero, M. & van de Steeg, J.A. 2010. Sustaining intensification of smallholder livestock systems in the tropics. Livest. Sci., 130: 95109.Google Scholar
Moll, H.A.J. 2005. Cost and benefits of livestock systems and the role of market and non-market relationships. J. Agric. Econ., 32: 181193.Google Scholar
Moll, H.A.J., Staal, S.J. & Ibrahim, M.N.M. 2007. Smallholder dairy production and markets: a comparison of production systems in Zambia, Kenya and Sri Lanka. Agric. Syst., 94: 593603.CrossRefGoogle Scholar
Moore, J.A. & Gamroth, M.J. 1993. Calculating the fertilizer value of manure from livestock operations. Oregon State University Extension Service. Oregon, USA.Google Scholar
Moore, K.L., Johnston, D.J. & Burrow, H.M. 2015. Sire breed differences for net feed intake in feedlot finished beef cattle. Proc. Assoc. Advmt. Anim. Breed. Genet., 16: 7679.Google Scholar
Nguyen, T.L.T., Hermansen, J.E. & Mogensen, L. 2010. Environmental consequences of different beef production system in the EU. J. Clean. Prod., 18: 756766.Google Scholar
Ott, R.L. & Longnecker, M. 2010. An introduction to statistical methods and data analysis. 6th edition. Belmont, CA, United States of America, Brooks/Cole, Cengage Learning.Google Scholar
Otte, J. & Upton, M. 2005. Poverty and livestock agriculture. In Animal Production and Animal Science Worldwide. WAAP Book of the Year. Rosati, A., Tewolde, A. & Mosconi, C. (eds.). pp. 281285. Wageningen, Wageningen Academic Publisher.Google Scholar
Palte, J.G.L. 1989. Upland farming on Java, Indonesia: a socio-economic study of upland agriculture and subsistence under population pressure. Nederlanse Geografische Studies No. 97, Utrecht.Google Scholar
Phong, L.T., de Boer, I.J.M. & Udo, H.M.J. 2011. Life cycle assessment of food production in integrated agricultire-aquaculture systems of Mekong Delta. Livest. Sci., 139: 8090.Google Scholar
Pica-Ciamarra, U. 2007. Livestock policies for poverty alleviation: theory and practical evidence from Africa, Asia and Latin America. Working Paper No. 27. Rome, FAO/PRLPI.Google Scholar
Samdup, T., Udo, H.M.J., Ibrahim, M.N.M. & van der Zijpp, A.J. 2010. Crossbreeding and intensification of smallholder crop-cattle farming systems in Bhutan. Livest. Sci., 132: 126134.Google Scholar
Scholtz, M.M., Steyn, Y., Marle-Koster, E.v. & Theron, H.E. 2012. Improved production efficiency in cattle to reduce their carbon footprint for beef production. S. Afr. J. Anim. Sci., 42(5): 450453.Google Scholar
Setneg, R.I. 1999. UU No. 41: Perlindungan Lahan Pertanian Pangan Berkelanjutan. Sekretariat Negara Republik Indonesia (available at http://perundangan.pertanian.go.id/admin/uu/UU-41-09.pdf).Google Scholar
Simapro 7.3. Amersfoort. PRé Consultants (available at www.pre.nl).Google Scholar
Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M. & de Haan, C. 2006. Livestock's long shadow: environmental issues and options. FAO. Rome, Italy.Google Scholar
Udo, H.M.J., Aklilu, H.A., Phong, L.T., Bosma, R.H., Budisatria, I.G.S., Patil, B.R., Samdup, T. & Bebe, B.O. 2011. Impact of intensification of different types of livestock production in smallholder crop-livestock systems. Livest. Sci., 139: 2229.Google Scholar
Wall, E., Simm, G. & Moran, D. 2009. Developing breeding schemes to assist mitigation of greenhouse gas emissions. Animal 4(3): 336376.Google Scholar
Weiler, V., Udo, H.M.J., Viets, T., Crane, T. & de Boer, I.J.M. 2014. Handling multi-functionality of livestock in a life cycle assessment: The case of smallholder dairying in Kenya. Curr. Opin. Environ. Sustain., 8: 2938.Google Scholar
Widi, T.S.M. 2004. Livestock sharing arrangements in the Province of Yogyakarta special region; perspectives from different stakeholders. MSc Thesis, Wageningen University, Wageningen.Google Scholar
Widi, T.S.M., Udo, H.M.J., Oldenbroek, K., Budisatria, I.G.S., Baliarti, E. & van der Zijpp, A.J. 2015. Is crossbreeding beneficial for mixed farming systems in Central Java? Anim. Genet. Resour., 56: 127144, Doi: 10.1017/S2078633615000028.CrossRefGoogle Scholar