Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T20:33:21.014Z Has data issue: false hasContentIssue false

Distinct morphological features of traditional chickens (Gallus gallus domesticus L.) in Western Visayas, Philippines

Published online by Cambridge University Press:  29 August 2012

J.C. Cabarles Jr*
Affiliation:
Central Philippine University College of Agriculture Resources and Environmental Sciences, Jaro, Iloilo City 5000, Philippines
A.L. Lambio
Affiliation:
University of the Philippines Los Baños, College, Laguna 4031, Philippines
S.A. Vega
Affiliation:
University of the Philippines Los Baños, College, Laguna 4031, Philippines
S.S. Capitan
Affiliation:
University of the Philippines Los Baños, College, Laguna 4031, Philippines
M.S. Mendioro
Affiliation:
University of the Philippines Los Baños, College, Laguna 4031, Philippines
*
Correspondence to: J. C. Cabarles Jr, Central Philippine University, Jaro, Iloilo City 5000, Philippines. email: [email protected]; [email protected]
Get access

Summary

The local or traditional types of chicken found in the Philippines are not well described and no comprehensive information is available and as yet not described as breeds. Among the regions in the Philippines, Western Visayas has the largest population of chickens with limited information on their distinct morphological characteristics. Eight hundred and ten chickens from 270 flocks were divided equally into six areas representing the provinces of Aklan, Antique, Capiz, Guimaras, Iloilo and Negros Occidental. Data collected were qualitative and morphometric traits the former were analysed using non-parametric test and general linear model (GLM) for the latter. Results showed that red-lace and brown-pencilled plumage dominated in roosters and hens, respectively. The local types from Guimaras were the heaviest and dominantly possess amber-coloured iris, yellow skin and shank, snake-like head and have a pea comb, whereas those from Aklan had the lightest live weight and having single comb (p < 0.01). Chickens from Antique were known for its wedge-shaped body. Those from other provinces were found to be comparable.

Résumé

Le poulet traditionnel de résumé est un groupe de poulet sans des informations complètes sur sa race. Parmi les régions aux Philippines, Visayas occidental a la plus grande population des poulets avec l'information limitée sur leurs caractéristiques morphologiques distinctes. Ainsi, cette étude a été entreprise. Huit cents et dix (810) poulets de 270 bandes ont été divisés également parmi les provinces d'Aklan, antiquité, de Capiz, de Guimaras, d'Iloilo, et de Negros occidental. Les données rassemblées étaient des traits qualitatifs et morphométriques l'ancien a été analysé en utilisant l'essai non paramétrique et le GLM pour le dernier. Les résultats ont prouvé que des coqs et les poules ont été dominés par le plumage rouge-lacé et brun-penciled, respectivement. Les poulets traditionnels de Guimaras étaient les plus lourds et possèdent principalement l'iris ambre-coloré, la peau jaune et la jambe, serpent-comme la tête, et le peigne de pois; considérant que, ceux d'Aklan ont eu le poids vif le plus léger et avoir la crête unique (p < 0.01). Des poulets de l'antiquité ont été connus pour son corps triangulaire. Ceux d'autres provinces sont avérés comparables.

Resumen

El pollo tradicional sumario es un grupo del pollo sin la información comprensiva sobre su casta. Entre las regiones en las Filipinas, Visayas occidental tiene la población más grande de pollos con la información limitada sobre sus características morfológicas distintas. Así, este estudio fue conducido. Ochocientos y diez (810) pollos a partir de 270 multitudes fueron divididos igualmente entre las provincias de Aklan, antigüedad, de Capiz, de Guimaras, de Iloilo, y de Negros Occidental. Los datos recogidos eran rasgos cualitativos y morphometric el anterior era analizado usando la prueba no paramétrica y GLM para el último. Los resultados demostraron que los gallos y las gallinas fueron dominados por el plumaje rojo-atado y marrón-penciled, respectivamente. Los pollos tradicionales de Guimaras eran los más pesados y poseen dominante el diafragma ambarino-coloreado, la piel amarilla y la caña, serpiente-como la cabeza, y el peine del guisante; mientras que, ésos de Aklan tenían el peso vivo más ligero y tener solo peine (p < 0.01). Los pollos de la antigüedad eran sabidos para su cuerpo acuncado. Ésos de otras provincias son encontrados para ser comparables.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avante, A.C. & del Fierro, V.F.J. 1991. The Philippine native chicken. In Bay-Petersen, ed. Catalogue of the native poultry in Southeast Asia, pp. 7075. Tainan: Kuo Thai Color Printing Co. Ltd.Google Scholar
Bagiou, S. 2010. Potentials and livelihood opportunities from native animal production in the Philippines. In Proceedings in the International Seminar-Workshop on the Utilization of Native Animals in Building Rural Enterprises in Warm Climate Zones, 19–23 July 2010, pp. 1–18. Science City, Nueva Ecija, Philippines.Google Scholar
BAS. 2011. Chicken: Inventory by Geolocation, Farm Type, Period and Year. CountrySTAT Philippines (available at http://www.bas.gov.ph; retrieved 11 February 2011)Google Scholar
Bannister, S.C., Tizard, M.L., Doran, T.J., Sinclair, A.H. & Smith, C.A. 2009. Sexually dimorphic microRNA expression during chicken embryonic gonadal development. Biol. Reprod. 81: 165176.Google Scholar
Belleza, E. 2010. S and T anchor program on Philippine native chicken: Market studies on native chicken in Region VI – A terminal report. University of the Philippines in the Visayas, Iloilo, Philippines.Google Scholar
Boettcher, P.J., Tixier-Boichard, M., Toro, M.A., Simianer, H., Eding, H., Gandini, G., Joost, S., Garcia, D., Colli, L., Ajmone-Marsan, P. & The Gobaldiv Consortium. 2010. Objectives, criteria and methods for using molecular genetic data in priority setting for conservation of animal genetic resources. Anim. Genet. 41(Suppl.1): 6477.Google Scholar
Chang, C.M., Coville, J.L., Coquerelle, G., Gourichon, D., Oulmouden, A. & Tixier-Boichard, M. 2006. Complete association between retroviral insertion in the tyrosinase gene and the recessive white mutation in chickens. BMC Genet. 7: 19.Google Scholar
Cocjin, B.B., Lambio, A.L., Hipolito, S.U., Gonzales, V.T., Linga, M.C., Tomambo, E.D., Roxas, G.F.A., Arenga, R.L. & Casiple, C.G. 1999. Improvement, utilization, and conservation of the Darag Philippine native chicken. WVSU Grad. J. 35(2): 1637.Google Scholar
Cocjin, B.B., Roxas, G.F.A., Arenga, R.L. & Casiple, C.G. 2001. Developing the package of technology for the production of hardened chicks and Darag broiler chickens. In Proceedings of the Philippine Society of Animal Science, 2001, pp. 1213, Cebu, Philippines.Google Scholar
Cocjin, B.B., Roxas, G.F.A., Arenga, R.L. & Casiple, C.G. 2004. Comparison of breeding and production performance of Darag-type Philippine native chicken in 1999 and 2003. In Proceedings of the Philippine Society of Animal Science, 2004, pp. 1215, Cebu, Philippines.Google Scholar
Cocjin, B.B., Roxas, G.F.A., Casiple, C.G. & Arenga, R.L. 2007. Improvement, utilization and conservation project for Philippine native chickens (Darag-type) in Western Visayas II: dispersal of the technology to farmer cooperators (Progeny testing). Philippine J. Vet. Anim. Sci. 33(1): 3946.Google Scholar
Collias, N.E. & Collias, E.C. 1967. A field of study of the Red Junglefowl in North-Central, India. Condor 69(3): 360386.CrossRefGoogle Scholar
Colwell, R. 2000. Rensch's rule crosses the line: convergent allometry of sexual size dimorphisms in hummingbirds and flower mites. Am. Nat. 156(5): 495510.CrossRefGoogle ScholarPubMed
Cuc, N.T.K., Muchadeyi, F.C., Baulain, U., Eding, H., Weigend, S. & Wollny, C.B.A. 2006. An assessment of genetic diversity of Vietnamese H'mong chickens. Int. J. Poult. Sci. 5(10): 912920.Google Scholar
Cuesta, M.L. 2008. Pictorial Guidance for Phernotypic Characterization of Chickens and Ducks. FAOGCP/RAS/228/GER Working Paper No. 15. Rome.Google Scholar
Daikwo, I.S., Okpe, A.A. & Ocheja, J.O. 2011. Phenotypic characterization of local chicken in Dekina. Int. J. Poult. Sci. 10(6): 444447.Google Scholar
Dana, N., Dessie, T., van der Waaij, L.H. & van Arendonk, J.A.M. 2010a. Production objectives and trait preferences of village poultry producers of Ethiopia: Implication for designing breeding schemes utilizing indigenous chicken genetic resources. Trop. Anim. Health Prod. 42: 15191529.Google Scholar
Dana, N., Dessie, T., van der Waaij, L.H. & van Arendonk, J.A.M. 2010b. Morphological features of indigenous chicken population of Ethiopia. Anim. Genet. Resour. 46: 1123.Google Scholar
Davila, S.G., Gil, M.G., Resino-Talavan, P. & Campo, J.L. 2009. Evaluation of diversity between different Spanish chicken breeds, a tester line and a White Leghorn population based on microsatellite markers. Poult. Sci. 88: 25182525.Google Scholar
Dorshorst, B.J., Okimoto, R. & Ashwell, C.M. 2010. Genomic regions associated with dermal hyperpigmentation, polydactyly, and other morphological traits in the Silkie chicken. J. Hered. 101(3): 339350.Google Scholar
Duguma, R. 2006. Phenotypic characterizationm of some indigenous chicken ecotypes of Ethiopia. Livestock Res. Rural Dev. 18(131) (available at http://www.lrrd.org/lrrd18/9/dugu18131.htm; retrieved 28 July 2011).Google Scholar
Egahi, J.O., Dim, N.I., Momoh, O.M. & Gwasa, D.S. 2010. Variations in qualitative traits in the Nigerian local chicken. J. Poult. Sci. 9(10): 978979.Google Scholar
Eriksson, J., Larson, G., Gunnarson, U., Bed'hom, B., Tixier-Boichard, M., Stromstedt, L., Wright, D., Jungerius, A., Vereijken, A., Randi, E., Jensen, P. & Andersson, L. 2008. Identification of the yellow skin gene reveals a hybrid origin of domestic chicken. PLoS Genet. 4(2): 18.Google Scholar
Escobin, R.P., Bondoc, O.L., Lambio, A.L. & Roxas, N.P. 2005. Heterosis in production traits and ranging abilityof chicken grown under organic management system. Philippine J. Vet. Anim. Sci. 31(1): 103114.Google Scholar
FAO & UNEP. 1986. Animal genetic resources data banks – descriptor list for poultry. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
FAO. 1998. Secondary guidelines for development of national farm animal genetic resources management plans: management of small population at risk. Rome: Food and Agriculture Organization of the United Nations (available at http://lprdad.fao.org/cgi-bin/getblob.cgi?sid=-1,50006316).Google Scholar
FAO. 2007. The State of the World's Animal Genetic Resources for Food and Agriculture, edited by Barbara Rischkowsky & Dafydd Pilling. Rome (available at http://www.fao.org/docrep/010/a1250e/a1250e00.htm).Google Scholar
FAO. 2009. Characterization of indigenous chicken production system in Cambodia. Prepared Dinesh, M.T., Geerlings, E., Solkner, J.Thea, S., Thieme, O. and Wursinger, M.. Rome: AHBL-Promoting Strategies for Prevention and Control of HPAI.Google Scholar
FAO. 2012. Phenotypic characterization of animal genetic resources. FAO Animal Production and Health Guidelines No. 11. Rome (available at http://www.fao.org/docrep/015/i2686e/i2686e00.pdf).Google Scholar
Guevara, L.A., Lambio, A.L. & Peñalba, F.F. 1991. Management practices of indigenous chicken raisers in the Southern Tagalog Region. Philippine J. Vet. Anim. Sci. 17(1–2): 6768.Google Scholar
Henry, M.H. & Burke, W.H. 1998. Sexual dimorphism in broiler chicks embryos and embryonic muscle development in late incubation. Poult. Sci. 77: 728736.Google Scholar
Hiemstra, S.J., Drucker, A.G., Tvedt, M.W., Louwaars, N., Oldenbroek, J.K., Awgichew, K., Kebede, S.A., Bhat, P.N. & da Silva Mariante, A. 2006. Exchange, use and conservation of animal genetic resources. Rome: Food and Agriculture Organization of the United Nation.Google Scholar
Hoffmann, I. 2010. Climate change and the characterization breeding and conservation of animal genetic resources. Anim. Genet. 41(Suppl. 1): 3246.Google Scholar
Israel, G. 1992. Determining sample size. Giansville, FL: University of Florida – Florida Cooperative Extension Service.Google Scholar
Johnson, R. 1988. Dimunition of pulsative growth hormone secretion in domestic fowl (Gallus domesticus): evidence of sexual dimorphism. J. Endocrinol. 119: 101109.Google Scholar
Lambio, A.L., Bondoc, O.L. & Grecia, M.C. 1998. Brooding and growing performance of four genetic groups of Philippine native chickens. Philippine J. Vet. Anim. Sci. 24(1–2): 18.Google Scholar
Lambio, A.L., Grecia, M.C. & Amado, A.P. 2000. Comparative evaluation of carcass and sensory characteristics of four genetic groups of Philippine native chicken. Philippine J. Vet. Anim. Sci. 26: 129136.Google Scholar
Lambio, I.A.F. & Barrion, A.A. 1998. Protein polymorphisms in five genetic groups of Philippine native chicken. In Proceedings of the Annual Convention of the Philippine Society of Animal Science, Manila, 35 p.Google Scholar
Lingaya, R.A.I.N., Oliveros, M.C.R. & Magpantay, V.A. 2007. Production performance and marketing of native chicken in the First and Fourth Districts of Iloilo. Philippine J. Vet. Anim. Sci. 33(2): 163171.Google Scholar
Lopez, C.J. 2008. Performance of free-range “Darag” chickens under different farming systems. Los Baños, Philippines: Philippine Council for Agriculture, Forestry and Natural Resources Research and Development Highlights 2007.Google Scholar
Magpantay, V.A., Supangco, E.P., Pacificador, A.Y., Sevilla, C.C., Lambio, A.L. & Gayeta, E.C. 2006. Characterization of native chicken production system in a coconut-based farming system in Dolores, Quezon. Philippine J. Vet. Anim. Sci. 32(2): 195202.Google Scholar
MASIPAG. 2010. Collection, Identification, Multiplication, Maintenance, and Evaluation (CIMME). Los Baños, Philippines: Magsasaka at Siyentipiko para sa Pag-unlad ng Agrikultura (available at http://www.masipag.org/cimme.htm/).Google Scholar
Morejohn, G. 1968. Study of the plumage of the four species of the genus Gallus. Condor 70: 5665.CrossRefGoogle Scholar
Mwacharo, J.M., Nomura, K., Hanada, H., Jianlin, H., Hanotte, O. & Amano, T. 2007. Genetic relationships among Kenyan and other East African indigenous chickens. Anim. Genet. 38: 485490.Google Scholar
Nishibori, M., Shimogiri, T., Hayashi, T. & Yasue, H. 2005. Molecular evidence for hybridization of species in the genus Gallus except Gallus varius. Anim. Genet. 36(5): 367375.Google Scholar
Nishida, T., Rerkamnuaychoke, W., Tung, D.G., Saignaleus, S., Okamoto, S., Kawamoto, Y., Kimura, J., Kawabe, K., Tsunekawa, N., Otaka, H. & Hayashi, Y. 2000. Morphological identification and ecology of Red Junglefowl in Thailand, Laos, and Vietnam. Anim. Sci. J. 71(5): 470480.Google Scholar
NSO. 2005. 2002 Scenario of the agriculture sector in the Philippines. Manila, Philippines: National Statistics Office (available at http://www.census.gov.ph/).Google Scholar
Ohta, N., Kajita, M., Kusuhara, S. & Kakiwaza, R. 2000. Genetic differentiation and phylogenetic relationships among the species of Gallus (Junglefowl) and the chicken. Japan Poult. Sci. 37: 3339.Google Scholar
Onibi, G.E., Folorunso, O.R. & Elumelu, C. 2008. Assessment of partial equi-protein replacement of soyabean meal with cassava and leucaena leaf meals in the diets of broiler chicken finishers. Int. J. Poult. Sci., 7(4): 408413.Google Scholar
Oñate, W. 1991. Estimated population management practices and performance of chicken in Camarines Sur. Rome, Italy: AGRIS, Food and Agriculture Organization of the United Nations (available at http://agris.fao.org).Google Scholar
Parchami, A. & Dehkordi, R.A.P. 2011. Morphometrical evaluation of parathyroid gland in native chickens. Middle-East J. Sci. Res. 7(5): 703706.Google Scholar
Patricio, H.G. & Cabarles, J.C.J. 2007. Comparative study on the breeding performance of Darag native chicken raised on full- and semi-confinement – A terminal report. Iloilo City, Philippines: Central Philippine University.Google Scholar
Pointer, M.A. & Mundy, N.I. 2008. Chicken skin sheds light on carotenoid genetics. Heredity 101: 393394.Google Scholar
Reges, J.E.O. & Gibson, J.P. 2003. Animal genetic resources and economic development: issues in relation to economic valuation. Ecol. Econ. 45: 319330.Google Scholar
Remes, V. & Szekely, T. 2010. Domestic chickens defy Rensch's rule: sexual size dimorphism in chicken breeds. J. Evol. Biol. 23(12): 27542759.Google Scholar
Roxas, N.P. & Escarlos, J.A.J. 2000. Growth performance of Philippine native and broiler chickens (Gallus gallus domesticus L.) under varying temperature and humidity. Philippine J. Vet. Anim. Sci. 26: 185196.Google Scholar
Roxas, N.P., Villanueva, E.M. & Lambio, A.L. 1996. Protein and isoenzymes polymorphisms in Philippine native chicken. Philippine J. Vet. Anim. Sci. 22(1–2): 18.Google Scholar
Silva, P., Guan, X., Ho-Shing, O., Jones, J., Xu, J., Hui, D., Notter, D. & Smith, E. 2008. Mitochondrial DNA-based analysis of genetic variation and relatedness among Sri-Lankan indigenous chickens and the Ceylon junglefowl (Gallus lafayetti). Anim. Genet. 40(1): 19.Google Scholar
Smith, C.A., Roeszler, K.N., Ohnesorg, T., Cummins, D.M., Farlie, P.G., Doran, T.J. & Sinclair, A.H. 2009. The avian Z-linked gene DMRT1 is required for male sex development in the chicken. Nature 461(10): 267271.Google Scholar
Smyth, J. 1990. Genetics of plumage, skin, and eye pigmentation in chicken. In Crawford, R., ed. Poultry breeding and genetics, pp. 109167. Amsterdam, Netherlands: Elsevier Science Publishers.Google Scholar
Somes, R. 1990a. Mutations and major variants of muscle and skeleton in chicken. In Crawford, R., ed. Poultry breeding and genetics, pp. 209237. Amsterdam, The Netherlands: Elsevier Science Publisher.Google Scholar
Somes, R. 1990b. Mutations and major variants of plumage and skin in chicken. In Crawford, R., ed. Poultry breeding and genetics, pp. 169208. Amsterdam, The Netherlands: Elsevier Science Publishers.Google Scholar
Stettenheim, P.R. 2000. The integumentary morphology of modern birds – an overview. Am. Zoolog. 40: 461477.Google Scholar
Sulinthone, S. 2006. Production and marketing of native chicken (Gallus gallus domesticus Linn) in Batangas and Iloilo province in the Philippines. Rome, Italy: AGRIS, Food and Agriculture Organization of the United Nations (available at http://agris.fao.org).Google Scholar
Tomambo, E.D., Cocjin, B.B., Roxas, G.F.A., Casiple, C.G. & Arenga, R.L. 2010. Production of mproved day-old and “hardened Philippine native (Darag) chicks – A terminal report. Iloilo: WVSU.Google Scholar
Wright, D., Boije, H., Meadows, J.R.S., Bed'hom, B.Gourichon, D.Vieaud, A.Tixier-Boichard, Rubin C.J., Imsland, F., Hallbook, F. & Andersson, L. 2009. Copy number variation in intron 1 of SOX5 causes the pea comb phenotype in chicken. PLoS Genet. 5(6): e1000512. doi:10.1371/journal.pgen.1000512.Google Scholar
Yu, M., Yue, Z., Wu, P., Wu, D., Mayer, J.A., Medina, M., Widelitz, R.B., Jiang, T.X. & Chuong, C.M. 2004. The developmental biology of feather follicles. Int. J. Dev. Biol. 48: 181191.Google Scholar
Zanetti, E., de Marchi, M., Dalvit, C. & Cassandro, M. 2010. Genetic characterization of local Italian breeds of chicken undergoing in situ conservation. Poult. Sci. 89: 420427.Google Scholar
Zhang, J.Q., Chen, H., Sun, Z.J., Liu, X.L., Ojang-Ba, Y.Z. & Gu, Y.L. 2009. Flesh color association with polymorphism of the tyrosinase gene in different Chinese chicken breeds. Mol. Biol. Rep. 37(1): 165169.Google Scholar
Zhao, D., McBride, D., McQueen, H.A., McGrew, M.J., Hocking, P.M., Lewis, P.D., Sang, H.M. & Clinton, M. 2010. Somatic sex identity is cell autonomous in the chicken. Nature 464(11): 237242.Google Scholar