Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T03:25:10.781Z Has data issue: false hasContentIssue false

Development of international genetic evaluations of dairy cattle for sustainable breeding programs

Published online by Cambridge University Press:  01 August 2011

W.F. Fikse
Affiliation:
Interbull Centre, Dept. of Animal Breeding and Genetics, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
J. Philipsson
Affiliation:
Interbull Centre, Dept. of Animal Breeding and Genetics, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
Get access

Summary

A large proportion of dairy foods consumed by humans are produced using milk from commercial dairy breeds. The result of high selection intensities, narrow breeding objectives and ignoring inbreeding in past decades is that much attention now needs to be given to conserving these commercial breeds to maintain and increase food production and meet future demands. The characteristics of a sustainable breeding program are broad breeding objectives, measures to control inbreeding rates and continuous genetic improvement to keep populations competitive. It is necessary to include traits in the breeding objectives that reduce the cost price of products in addition to traits that increase the output of products. Breeding objectives differ between countries (production environments), and together with genotype-environment interaction for single traits (e.g. milk yield) the implication is that ranking of animals for local breeding goals differs between countries (production environments). Acknowledging this in selection programs leads to larger number of selected animals - at least on a global level, adding to the global diversity in commercial dairy cattle populations. Interbull provides international comparisons of bulls from six dairy breeds for most of the economically important traits, thereby enabling global selection for broad breeding objectives in many countries around the world.

Résumé

Une grande partie des produits laitiers pour la consommation humaine provient de lait de races commerciales. Le résultat d'une sélection intense, d'objectifs d'amélioration limités et ne pas tenir compte des problèmes de consanguinité dans le passé nous portent aujourd'hui à la nécessité d'une majeure attention à la conservation de ces races commerciales tout en conservant et augmentant la production alimentaire pour faire face à la demande dans le futur. Les caractéristiques d'un programme d'amélioration durable sont les objectifs plus larges, les mesures pour contrôler les niveaux de consanguinité et l'amélioration génétique continue pour obtenir que les populations soient compétitives. Il est nécessaire d'inclure certains traits dans les objectifs d'amélioration qui aident à réduire le coût des produits, ainsi que d'autres qui permettent d'augmenter la production de ces même produits. Les objectifs d'amélioration dépendent des pays (p.e. milieu de production) et de l'interaction génotype-milieu pour chacune de ces races (p.e. performances lait), ce qui entraîne que la marge du nombre d'animaux disponible pour les objectifs d'amélioration soit différente d'un pays à l'autre (milieu de production). Prenant en considération ce point nous pouvons augmenter le nombre d'animaux sélectionnés, au moins au niveau mondial, ainsi que la diversité mondiale dans les populations de bovin à lait. Interbull fournis des comparaisons au niveau internationale de taureaux appartenant à six races laitières parmi les plus rentables et importantes du point de vue commercial, ce qui permet une sélection mondiale pour des plus amples objectifs d'amélioration dans beaucoup de pays dans le monde.

Resumen

Una amplia parte de los productos lácteos para consumo humano provienen de leche de razas comerciales. El resultado de una selección intensificada, objetivos de mejora limitados y no tener en cuenta los problemas de consanguinidad en las pasadas décadas hacen que ahora sea necesaria una mayor atención para conservar estas razas comerciales al mismo tiempo que se mantiene e incrementa la producción alimentaria para hacer frente a la demanda futura. Las características de un programa de mejora sostenible son los amplios objetivos de mejora, las medidas para controlar los niveles de consanguinidad y una mejora genética continua para conseguir que las poblaciones sean competitivas. Es necesario incluir algunos rasgos en los objetivos de mejora que reduzcan el costo de los productos, así como otros que incrementen la producción de los mismos. Los objetivos de mejora dependen de los países (p.e. ambiente de producción), y junto con la interacción genotipo-ambiente para cada una de las razas (p.e. rendimiento en leche), hacen que el margen de animales para los objetivos de mejora local difieren de un país a otro (ambientes de producción). El reconocer esto en un programa de selección permite ampliar el número de animales seleccionados, por lo menos a nivel mundial, ampliando la diversidad mundial en las poblaciones de vacuno de leche. Interbull proporciona comparaciones internacionales de toros pertenecientes a seis razas lecheras provenientes de entre las más económicamente importantes, lo que permite una selección mundial para mayores objetivos de mejora en muchos países del mundo.

Type
Research Articles
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

List of References

Aamand, G.P. 2007. Use of health data in genetic evaluation and breeding. Proceedings of the 35th Biennial session of ICAR. EAAP publication no. 121: 275282.CrossRefGoogle Scholar
Banos, G. & Smith, C.. 1991. Selecting bulls across countries to maximize genetic improvement in dairy cattle. Journal of Animal Breeding and Genetics 108: 174181.CrossRefGoogle Scholar
Berg, P., Nielsen, J. & Sorensen, M.K.. 2006. EVA: realized and predicted optimal genetic contributions. Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, communication no. 27-09.Google Scholar
Boichard, D., Bonaiti, B., Barbat, A. & Mattalia, S.. 1995. Three methods to validate the estimation of genetic trend for dairy cattle. Journal of Dairy Science 78: 431437.CrossRefGoogle ScholarPubMed
Delgado, C., Rosegrant, M., Steinfeld, H., Ehui, S. & Courbois, C.. 1999. Livestock to 2020-The next food revolution. Food, Agriculture, and the Environment Discussion Paper 28. IFPRI (International Food Policy Research Institute), Washington, DC, USA, pp. 72.Google Scholar
Fikse, W.F. 2004. Interbull guides through the labyrinth of national genetic evaluations. Proceeding of the 55th meeting of the EAAP. EAAP Book of Abstracts 10, 326.Google Scholar
Fikse, W.F., Jakobsen, J.H. & Gustafsson, C.. 2006. Selection of sires in different countries for global dairy breeds. Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, communication no. 01-31.Google Scholar
Groen, A.F., Steine, T., Colleau, J.J., Pedersen, J., Pribyl, J. & Reinsch, N.. 1997. Economic values in dairy cattle breeding, with special reference to functional traits. Report of an EAAP-working group. Livestock Production Science 49:121.CrossRefGoogle Scholar
Goddard, M.E. 1992. Optimal effective population size for the global population of black and white dairy cattle. Journal of Dairy Science 75: 29022911.CrossRefGoogle ScholarPubMed
Hansen, L.B. 2006. Monitoring the worldwide genetic supply for cattle with emphasis on managing crossbreeding and inbreeding. Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, communication no. 01-01.Google Scholar
Heins, B.J., Hansen, L.B. & Seykora, A.J.. 2006a. Production of pure Holsteins versus crossbreds of Holstein with Normande, Montbeliarde, and Scandinavian Red. Journal of Dairy Science 89: 27992804.CrossRefGoogle ScholarPubMed
Heins, B.J., Hansen, L.B. & Seykora, A.J.. 2006b. Calving difficulty and stillbirths of pure Holsteins versus crossbreds of Holstein with Normande, Montbeliarde, and Scandinavian Red. Journal of Dairy Science 89: 28052810.CrossRefGoogle ScholarPubMed
Heins, B.J., Hansen, L.B. & Seykora, A.J.. 2006c. Fertility and survival of pure Holsteins versus crossbreds of Holstein with Normande, Montbeliarde, and Scandinavian Red. Journal of Dairy Science 89: 49444951.CrossRefGoogle ScholarPubMed
Klei, L., Mark, T., Fikse, W.F. & Lawlor, T.. 2002. A method for verifying genetic evaluation results. Interbull Bulletin 29: 178182.Google Scholar
Lohuis, M.M. & Dekkers, J.C.M.. 1998. Merits of borderless evaluations. Proceedings of the 6th World Congress on Genetics Applied to Livestock Production 26: 169172.Google Scholar
Luff, B. 2006. Guernsey Global Breeding Programme. http://www.worldguernseys.org/.Google Scholar
Mark, T. 2004. Applied genetic evaluations for production and functional traits in dairy cattle. Journal of Dairy Science 87: 26412652.CrossRefGoogle ScholarPubMed
Mark, T. 2005. International genetic evaluations for udder health traits in dairy cattle. PhD thesis. Acta Universitatis Agriculturae Sueciae, 2005: 93. Swedish University of Agricultural Sciences, Uppsala, Sweden.Google Scholar
Meuwissen, T.H.E. & Sonesson, A.K.. 1998. Maximizing the response of selection with a predefined rate of inbreeding- overlapping generations. Journal of Animal Science 76: 25752583.CrossRefGoogle ScholarPubMed
Miglior, F., Muir, B.L. & Van Doormaal, B. J.. 2005. Selection indices in Holstein cattle of various countries. Journal of Dairy Science 88: 12551263.CrossRefGoogle ScholarPubMed
Mulder, H.A., Veerkamp, R.F., Ducro, B.J., van Arendonk, J.A.M. & Bijma, P.. 2006. Optimization of dairy cattle breeding programs for different environments with genotype by environment interaction. Journal of Dairy Science 89: 17401752.CrossRefGoogle ScholarPubMed
Philipsson, J. 1987. Standards and procedures for international genetic evaluation of dairy cattle. Journal of Dairy Science 70: 418424.CrossRefGoogle Scholar
Philipsson, J. 1998. Global use of bulls and the “INTERBULL System”. Agric. Scand., Sect. A Animal Science 1998: Supplement 29: 98107.Google Scholar
Philipsson, J. 2000. Sustainability of dairy cattle breeding systems utilising artificial insemination in less developed countries-examples of problems and prospects. ICAR Technical Series no. 3: 551562.Google Scholar
Philipsson, J., Eriksson, J-Å. & Stålhammar, H.. 2005. Know-how transfer in animal breeding-the power of integrated cow data bases for farmer's selection of bulls to improve functional traits in dairy cows. In: Knowledge transfer in cattle husbandry. EAAP Publication no. 117: 8595.Google Scholar
Philipsson, J. & Lindhé, B.. 2003. Experiences of including reproduction and health traits in Scandinavian dairy cattle breeding programmes. Livestock Production Science 83: 99112.CrossRefGoogle Scholar
Robertson, A. 1959. The sampling variance of the genetic correlation coefficient. Biometrics 15: 469485.CrossRefGoogle Scholar
Rogers, G.W., Banos, G. & Nielsen, U.S.. 1999. Genetic correlations among protein yield, productive life, and type traits from the United States and diseases other than mastitis from Denmark and Sweden. Journal of Dairy Science 82: 13311338.CrossRefGoogle ScholarPubMed
Roxström, A. 2001. Genetic aspects of fertility and longevity in dairy cattle. PhD thesis. Acta Universitatis Agriculturae Sueciae, Agraria 276. Swedish University of Agricultural Sciences, Uppsala, Sweden.Google Scholar
Schaeffer, L.R. 1994. Multiple-country comparisons of dairy sires. Journal of Dairy Science 77: 26712678.CrossRefGoogle ScholarPubMed
Sonesson, A.K. 2006. Assessing total profit of alternative levels of co-operation between Nordic cattle populations. In: Project report: Sustainable Breeding in the Nordic Red Dairy Breeds.Google Scholar
Sorensen, M.K., Berg, P., Jensen, J. & Christensen, L.G.. 1999. Stochastic simulation of breeding schemes for total merit in dairy cattle. Interbull Bulletin 23: 183192.Google Scholar
Sorensen, A.C., Sorensen, M.K. & Berg, P.. 2005. Inbreeding in Danish dairy cattle breeds. Journal of Dairy Science 88, 18651872.CrossRefGoogle ScholarPubMed
Stolzmann, M., Jasiorowski, H., Reklewski, Z., Zarnecki, A. & Kalinowska, G.. 1981. Friesian cattle in Poland. Preliminary results of testing different strains. World Animal Review, 38: 915.Google Scholar
Wall, E., Brotherstone, S., Woolliam, J.A., Banos, G. & Coffey, M.P.. 2003. Genetic evaluation of fertility using direct and correlated traits. Journal of Dairy Science 86: 40935102.CrossRefGoogle ScholarPubMed
Weigel, K.A. 2001. Controlling inbreeding in modern breeding programs. Journal of Dairy Science 84 (E. supplement): E177-E184.CrossRefGoogle Scholar
Zwald, N.R., Weigel, K.A., Chang, Y.M., Welper, R.D. & Clay, J.S.. 2004. Genetic selection for health traits using producer-recorded data. I. Incidence rates, heritability estimates, and sire breeding values. Journal of Dairy Science 87: 42874294.CrossRefGoogle ScholarPubMed